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Preface

Learning an assembly
language is not in itself a
difficult task and I'll be the
first to admit that there are
many books available which
have excellent introductory
accounts of this subject. But a
microprocessor does not work
in isolation and in the Amiga
the 68000 processor is just a
small part of a complex
system which involves not
only a great many other
hardware components but a
very complex covering shell of
operating system software as
well. If you are intent on
programming the Amiga using
68000 assembly language then
some knowledge of this
operating system is needed
right from the start and this
produces an immediate
stumbling block.

Almost all books which deal in
depth with programming the
68000 microprocessor do so
in an operating system
independent way and this
makes it very difficult for the
would-be 68000 (68K) Amiga
programmer to relate what
they are learning about to the
Amiga environment. On the
face of it the solution would
be touse general 68000 books
to learn about programming
the processor and get the
Amiga-specific material from
books which deal specifically
with the Amiga’s operating
system. Things are not
however quite that simple
because much of the Amiga’s
documentation has been
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written with the C programmer in mind. Worse than that, much of it
has been written for professional programmers who are already
system literate.

The bottom line is that in many ways newcomers to assembly
language, no matter how enthusiastic they might be, are left high
and dry and it is exactly this information gap which | have tried to
fill with this book. I've attempted to introduce 68000 assembly
language specifically from an Amiga orientated viewpoint and my
main aim has been to provide you with the necessary footholds to
get into low-level Amiga programming as quickly as possible.

The material in this book is essentially self-contained but as you
progress you will doubtless follow your own path in terms of what
you choose, Amiga-wise, to take an interest in. Regardless of the
directions in which you travel you will almost certainly get to a
point where more and more reliance has to be placed on the
Amiga’s official system documentation. | would be less than honest
if I told you that some experience with the C language would not be
an advantage to you at this stage and my experience is that all
programmers, including those whose sole interest was
programming at the 68000 microprocessor level, have eventually
needed to come to terms with C just in order to cope with the
official Amiga documentation. This, from a long term viewpoint, is
something which you should clearly keep in mind.

I will not be using, or referring to the C language, for the bulk of
this book but there a few occasions, such as the example on mixed
code programming, where some knowledge of C is needed. Because
of this, and because you may find the material generally useful in
your Amiga travels, | have included an appendix which outlines the
most important features of the C language.

As far as learning 68000 assembler goes | have worked primarily on
a need to know basis and have concentrated on those Amiga
specific topics that are not found in more general 68000 books and
which, in my opinion, have not been properly explained (from the
beginner’s viewpoint) in existing Amiga specific texts. In order to
gain sufficient space to do this I've avoided duplicating what I
regard as essentially standard 68000 information. You will not, for
instance, find detailed accounts of each and every instruction that
the 68000 can execute (such material is readily available from the
sources mentioned in the bibliography).

Similarly I have avoided extended discussions of hardware issues
because to start assembler programming on the Amiga, and any
other machine come to that, all that is needed is a simple
conceptual model of the processor and its facilities. Knowledge of
how the processor physically communicates with memory and the
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outside world, and discussions of what timing signals are used to
ensure that such things happen at the right time, are two example
areas which do not seem to facilitate the move to low-level
programming. These hardware related topics are certainly
important to system designers and engineers but for most would-be
assembler programmers I've found that discussions of such
material only complicates matters.

In short then I've attempted to isolate you the reader from any low-
level topic that does not directly contribute to the real task at hand,
namely how to go about writing your first 68000 programs. |
believe that I can not only show you a simple pathway to achieve
this objective but that I'll even be able to make the subject
enjoyable and that, believe me, is over half of the battle!

Paul Overaa
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Fundamental
Concepts

The objective of this chapter
is to draw your attention to,
and explain, a number of
general issues related to the
writing of assembly language
programs. As you probably
know, the heart of the
conventional microcomputer
system is a combined
logic/control unit known as a
central processing unit or
CPU. Most processors have a
considerable number of
common characteristics
including the fact that all have
a set of internal registers for
storing data and all have some
hardware-orientated means of
communicating with the
outside world. Since the
amount of internal storage
available on the CPU itself is
always limited it must, before
it can do any useful work, also
be connected to additional
memory components that are
able to provide a suitable
amount of additional CPU-
accessible electronic storage.
Two basic types of memory
chips are in common use:

RAM (random access memory)
chips may be both written to
and read from and as such are
used to provide storage space
that may be dynamically
changed either prior to or
during program execution.

ROM (read only memory) chips
can only be read from and are
therefore used to hold
information blocks that do not
change. Once programmed, a
ROM chip, whether powered
up or not, will keep its
contents indefinitely. RAM
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chips on the other hand do not hold their data in this way and
when the power is removed from the system the contents of all
random access memory units will disappear.

On small and medium power computers the processor is usually an
integrated circuit known as a microprocessor and this device will
have its own instruction set, a collection of logic/arithmetic
instructions, which can cause the microprocessor to perform
various tasks. At the end of the day it is sets of these instructions,
stored in memory, which constitute the programs which will be
executed by the computer system.

The language that the microprocessor understands is based on
binary numbers. Given suitable hardware ie, a processor chip,
memory, some input/output facilities, and all the associated
electronic support, one way of programming such a system would
be to enter suitable binary numbers directly into system memory
and then to get the microprocessor to execute the instructions.

This machine code programming approach was actually used to
create and run programs in the early days of computing. It didn’t
take long before programmers realised that this sort of
programming was a pain because the numbers which related to
particular processor instructions didn’t have any obvious
connection with what the programmer was really trying to do. The
solution was to give the instructions meaningful names (or as
meaningful as possible) eg ADD, MOVE, SUB and so on. These
humanised instruction names were called mnemonics because they
were a memory aid that helped programmers to remember the
purpose of the underlying processor instructions. The next step
was to automate the process of converting mnemonics back to the
numbers which represented the processor instructions. Programs
which did this translation effectively assembled the runable
program from the mnemonic instructions that the programmer had
provided so they were called assemblers. In short, assembly
language programming was born!

Over the years microprocessors, assembly language programming
concepts, and development software have all become increasingly
sophisticated but these assembly languages (and each
microprocessor has its own) are always close to the actual machine
and its underlying hardware - hence they are called low-level
languages. The Amiga, as you'll doubtless already know, uses a
microprocessor called the Motorola 68000 and this means that to
conveniently program the Amiga at the microprocessor level you
need to learn 68000 assembly language.
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The High-Level Alternative

The birth of assembly language didn’t solve all of the problems that
the early programmers faced. To start with, programs written in
low-level languages are processor specific so they are not portable,
ie not easily made to run on different processors. Another problem
is that you have to express what you want to do in terms of the
instructions which are available on the processor and this means
working primarily with bits and bytes. Any other data structures
needed have to be created by the programmer so if, for instance,
the problem being solved involved text strings or floating point
numbers then it is you, the programmer, who would have to decide
how to represent those entities, and do the necessary
programming.

High-level languages, such as BASIC and Pascal, attempt to provide
a vehicle for expressing algorithms which is more human orientated
and powerful. A single statement in a high-level language might
correspond to operations which, when expressed in a lower-level
language, would need many hundreds of code instructions. At the
end of the day however the high-level language interpreter or
compiler must produce such a series of low-level machine
instructions in order that the program can run.

In reality, this low-level/high-level two tier classification is rather
an over-simplification. Nowadays there exists a wide spectrum of
languages each possessing features from both groups. Almost all
current assemblers for example allow macros, reusable groups of
low-level operations, to be built up and the creation of these types
of units allow the programmer to tackle low-level code writing at a
significantly higher level than was possible with early assemblers.
Having said that, high-level languages clearly have a number of
important benefits:

e The structure of the program can be based on, or reflect, the
inherent structure of the original problem.

e High-level languages can usually offer a degree of self-
documentation.

e High-level languages allow meaningful, hardware independent,
names to be used both for data and procedures/subroutines.

e The abstraction offered by high-level languages allows for a
clearer algorithm representation. Much of the detail which would
be present in a lower-level form is hidden by the more powerful
language statements.

e High-level languages are easier to learn than low-level languages.

e High-level languages often offer sophisticated debugging
facilities.




Mastering Amiga Assembler
e T e R S S S e e

e High-level programs are often more portable, ie can run on any
machine for which the language has been implemented.

The key advantage offered by high-level languages is that they
provide a means of expressing the steps of an algorithm at a more
problem/solution orientated level. If, for example, you wish to open
a file, read some data, and then close a file it might be possible to
use program statements which represent these file opening, data
reading, and file closing operations directly. Three statements
which relate closely to the things which need to be done, as
opposed to hundreds of assembler instructions which, taken in
isolation, will give few obvious clues as to the work being carried
out.

As the level of abstraction increases, the programmer becomes less
concerned with the hardware on which the program runs and is
able to work more and more at a problem-orientated level. Symbolic
names take the place of memory addresses, support for different
data types means that the language (as opposed to the programmer)
can be left to figure out the details about the sizes of objects being
used and how/where they should be stored. Similar generalised
control abstraction facilities allow loops and decision tests to be
used as building blocks, which again makes it easier for the
programmer to tackle problems in a solution orientated, rather than
a hardware orientated, way.

Now if these high-level language characteristics are so good why on
earth are people still using assembly language at all? To be honest
people have been predicting the demise of the assembly language
programmer for years but it simply hasn’t happened - in fact
interest in assembly language programming actually seems to be on
the increase and it turns out that there is far more to the high-
level/low-level debate than first meets the eye.

Benefits of the Low-Level Approach

It was once thought that there were only three reasons for using
assembly type languages: speed, compactness and the ability to
achieve the ultimate control over the system. The benefits are
rather more subtle than this because there's no doubt that an
understanding of an assembly language gives the programmer an
in-depth appreciation of what high-level languages must do to
achieve their abstraction magic. It's a similar situation to driving a
car. If you don’t know roughly how the gears work then you might
wonder why you can’t pull away in fourth gear without stalling the
engine. Plenty of driving will convince you that this is indeed the
case, but no matter how much you drive you'll never actually find
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out why this is so. Learn a bit about the internal mechanics
however and it will become obvious within a very short space of
time!

Since the Amiga is a 68000 based machine it's not hard to figure out
that all Amiga languages must end up generating 68000 code - they
have to because otherwise the final programs simply wouldn’t be
able to run on the Amiga’s microprocessor. What then is it that
actually makes code written by assembler programmers run faster
than the equivalent 68000 code generated by programmers working
with high-level languages? The answer is simply that the assembler
programmer can make sure that their final code is super-efficient.
Here’s a typical example.

As you may know, the Amiga has a vast number of pre-written
routines available which are organised as a collection of units
known as run-time libraries. The routines present in these libraries
are accessed by a table stored in memory immediately below the
base (main reference) address of the library. By using a negative
offset, called a LVO (Library Vector Offset), the programmer can
specify which routine is to be called. These routines are used by
placing the library’s base address in one of the 68000 registers
(actually register a6), using the LVO as a displacement value, and
performing something called an indirect subroutine call. These
terms may not mean much at the moment but the important point
to grasp is that the necessary data needs to be held in the
microprocessor’s internal registers before the subroutine call is
made.

Now let’s consider what happens with a conventional C compiler
when a high-level function call is used to execute the same library
routine. The compiler starts by pushing function call parameters
onto the stack, an area in memory which the microprocessor uses
to store items on a last-in-first-out basis. Now, when you are calling
an Amiga library function, it turns out that this is a total waste of
effort because, at the end of the day and as indicated above, the
Amiga run-time libraries expect the parameters to be present in the
68000 processor registers and not on the microprocessor stack. The
bottom line is that before the real library function call can occur,
the parameters, so carefully placed on the stack by the compiler
generated code, have to be immediately copied back into suitable
processor registers.

The code stubs which do this are part of the amiga.lib library and
this, plus the fact that the LVO values are also needed, is the reason
why C programmers usually link their code with the amiga.lib
linker library in the first place. The resultant C code therefore ends
up doing a lot of unnecessary work and this of course slows the
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program down. By placing library call parameters directly into the
appropriate 68000 registers the assembly language programmer
can eliminate such inefficiencies very easily indeed.

Now to be completely fair, at least as far as the above example
goes, | ought to point out that some compilers (eg Lattice/SAS C) do
now support register based parameter passing and can therefore
also now eliminate these amiga.lib subroutine time penalties. Being
equally fair as far as the assembler programmer is concerned I
should mention that while register based parameter passing in C is
a recently added facility such advantages have always been
available to the 68000 assembler programmer!

The underlying general point I'm trying to make is this: all high-
level languages have to make compromises with the code they
generate and because of this there will always be many occasions
where the assembly language programmer can cut corners and
eliminate inefficiencies. This is the reason why the assembly
language programmer will almost always be able to produce
program code that runs faster than code generated by a compiler.

Assembly language then has a lot going for it. High-level language
topics that programmers often find difficult to understand, such as
bit-manipulation operations and the use of indirection and
pointers, have natural and easy to recognise counterparts in
assembly language. The overall result, believe it or not, is that
knowing something about your machine at this low level of
programming will not only help you get a gut feeling for what
computing is all about but it can even help you to write more
effective high-level code. For more information see the Appendix
Mastering Amiga Guides.

Creating an Assembly Language Program

The first step in writing an assembly language program is to use an
editor program to prepare a source code file. This file will simply
be an ASCII text file which contains the program instructions that
you've written and you will of course be able to list and print the
contents of such a file just as you would a letter or any other piece
of stored text. Most commercial assemblers come with their own
editor programs but, if you prefer, it is also possible to use an
alternative editor or wordprocessor program. The only proviso with
the latter option is that it must be possible to stop the
wordprocessor from inserting additional control characters because
these characters would, as likely as not, cause the assembler
program to come to a grinding halt as it tries unsuccessfully to
interpret them.
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Once a source file is available, the next step is to get the assembler
program to convert it to the appropriate 68000 instructions. On the
Amiga the assembler will in many cases first have to be used to
create a standardised intermediate form known as an object code
file. This is not a runable program as such and there are three
possible reasons for this. Firstly, although the object file will
include the translated 68000 instruction-related material, the code
will not itself be in the right format to be loaded by AmigaDOS.
Secondly, the program will not contain an all-important piece of
Amiga specific front-end code known as the startup code which is
needed if the program is to run from the Workbench. Thirdly, the
file may still contain references to unresolved (unknown) items,
such as linker library routines or variables that have been specified
as being present in other object code modules.

A third stage, known as linking, attempts to fill in the gaps created
by these unresolved references. The Amiga linker, called Blink, is
able to combine the startup code and the code you have written
(plus any other specified object code modules or library code), to
produce a program file that may then be loaded and run under the
Amiga’s operating system. Having said all that I'm afraid that I must
now point out that nowadays many assemblers can produce a
variety of different output file formats. HiSoft’s Devpac assembler
for instance, providing it is presented with a suitable source code
file, can generate directly executable code without an explicit
linking stage!

Libraries on the Amiga cause a few headaches for the beginner
primarily because the term is used in a number of different ways.
During the example of high-level language inefficiencies | spoke of
the Amiga’s run-time libraries which are collections of shared
routines that, by virtue of the Amiga’s operating system, can be
made available to all programs which need them during the times
that they are actually running.

The libraries | am talking about in the context of the above linker
discussion are rather different. Linker libraries are sets of pre-
written system or utility routines which will be tagged onto the
code you write during the linking stage. If you use a linker library
function within your program the linker, providing you correctly
specify the name of the library which holds the routine, will
automatically find and include the right piece of code in the
finished program. I'll be saying much more about the various Amiga
library schemes later in the book.

On occasion things may not go well and you may find that as the
assembler attempts to translate your source file it reports any
number of errors. Whatever the cause (syntax errors, illegal
instructions etc) these faults will have to be corrected and this may
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mean that in the early days you’ll frequently pass through the
edit<—>assemble cycle quite a few times before you succeed in
creating a program that assembles successfully. Even having got
through that stage of the proceedings you may then find that the
linker reports additional errors. Mis-spelling library routine names
or not specifying the correct location of library files are commonly
seen linker errors. These errors must also be found and eliminated
before a runable version of the program can be created.

As you doubtless already know there is no guarantee, even once a
program is up and running, that it is free from errors. In fact
assembly language programmers, unless they are very careful, are
likely to spend far more time looking for bugs than their high-level
language counterparts. Many assembly language programmers
frequently use a piece of software called a debugger, which is a
system tool that is able to execute a program on a step-by-step
basis, in order to help them to trace program execution and identify
faults. Whilst | certainly agree that debuggers can be useful on
occasion I am not in favour of their use as a general fault-finding
tool.

Number Systems

One thing you are going to need to get used to as you enter the
world of assembly language is the use of additional numbering
systems. Since this primarily involves binary and hexadecimal
numbers some words on these two number schemes are in order.

In the decimal number system ten different symbols (the digits 0-9
inclusive) are used to represent numbers. Each digit in a number is
ten times more significant than the digit to its right, and ten times
less significant than the digit to its left. This ten times relationship
that exists between the digits of all decimal numbers is obviously a
fundamental part of the decimal numbering system. If, for example,
we consider the number 375 and write a full description of what
each digit means, we can see that it is just a convenient way of
expressing this sum:

(3 x 100) + (7 x 10) + 5

Going one better than this and, bearing in mind that any number
raised to the power zero is unity, you can express each effective
digit term as a product of one digit and a power of 10 like this:

3 x 102 + 7 x 10" + 5 x 100

For decimal numbers 10 is known as the radix, or base, of the
numbering system but many other bases are possible. Computers
use binary, ie base 2, numbers which consist of strings of 0s and 1s
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and again, if you think of a binary number in terms of its explicit
radix = 2 representation, it's easy to see the relationship between
the binary and decimal number systems:

101 1 bipnary =
1 x 23 +0 x22+ 1 x 2"+ 1 x 20
8 + 0 + 2 + 1 = 11 decimal

By writing out what the binary number means in full it becomes
quite easy to see that 1011 binary is the decimal number eleven!

Computers use binary numbers internally because the two digits 0
and 1 relate directly to the possible states of bits within the
memory hardware of most computer systems. Binary numbers are
then intimately involved with a great many computing applications
but, since they are not that easy for us humans to work with
(because long strings of Os and 1s are easily mis-interpreted) a
related radix scheme called hexadecimal is often used as an
alternative.

Hexadecimal numbers use a radix of 16 and the sixteen symbols
used are the digits 0-9 plus the letters A-F. Each column in a base
16 number therefore represents some power of the base. For
example the decimal number 16 itself is written as 10 hex, because:

10 hex = 1 x 16" + 0 x 1690
16 + 0
Similarly 1F hex would be:
1F hex = 1 x 167 + 15 x 160
16 + 15 31 decimal

The fact that the bases of the binary and hexadecimal numbering
systems are power related (2 to the power of 4 equals 16) produces
a special, and very useful, relationship between these two
numbering systems - it allows one hexadecimal digit to represent
four binary digits. Best of all the binary<-> hex conversion process
is very easy to understand once you've learnt the table in Figure
1.1.

16 decimal
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Binary
0000
0001
0010
0011
0100
0101
o110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MmO QWO 0N Ogsw N~ O

Figure 1.1. Table for binary to hex conversion and vice versa.

To convert a hexadecimal number into binary form you just replace
each hexadecimal digit with its group of four binary digits. To
convert a binary number to its hex form you peel off (from right to
left) groups of four bits and replace them with the corresponding
hex digit!

So to convert CF hex to the binary equivalent you’d replace each of
the two hexadecimal symbols with the binary equivalents like this:

CF hex = c F
1100 1111 = 11001111 binary

To go the other way you take groups of four bits from the binary
number and replace then with the corresponding hex digits. The
binary number 1111000010101010, for example, could be
translated to hexadecimal form as follows:

1111000010101010 = 1111 0000 1010 1010
F 0 A A = FOAA hex

Using (and converting between) binary, hex and decimal number
systems is not that difficult but it does take practice. Familiarity
with hex and binary number forms is also essential for
understanding how the bitwise logical operations, provided by both
microprocessor instructions and high-level languages, work. Logical
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AND and OR instructions for instance, which I'll assume you know
about from languages such as BASIC, perform operations based on
the two truth tables in Figure 1.2.

X Y X AND Y

0 0 0

1 0 0] Logical AND Operation
0 1 0

1 1 1

X Y X OR Y

0 0 0

1 0] 1 Logical OR Operation
0 1 1

1 1 1

Figure 1.2. Logical AND Operation (top) and Logical OR Operation (bottom).

Being able to picture in your mind what these tables mean is a big
advantage. If you AND two operands together then only the bit
positions where both operands have a bit set to 1 will produce a 1
in the result. With the OR operation you’'ll get a 1 in the result when
either (or both) of the bits in that position in the corresponding
operands are set to 1.

The bit pattern for FO hex for instance is 11110000 so ANDing any
value with FO hex will force the lower four bits of the result to zero
— the value FO hex is called a mask because it masks out certain bit
positions. The OR operation is equally useful because it can force
bit positions to take particular values.

Last Words

The instruction sets of most processors, such as the 68000 used in
the Amiga, are quite limited and there is nothing inherently
complex about their operations. Each instruction carries out some
elementary task, perhaps adding two values together or copying the
contents of one memory location to another.

Despite this underlying simplicity there's no doubt that tackling
68000 assembly language is not a task to be undertaken lightly.
Problems will arise when you try to work out how to combine
hundreds and thousands of assembly language instructions into a
program which does a particular job. It is a task which is error

|
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prone and, by its very nature, time consuming. The benefits? Firstly
you'll be able to make your programs run at the ultimate speed.
Secondly, you will develop a gut feeling for what computing is all
about at the nuts and bolts level.

Assembly language programming on the Amiga adds another
dimension - the complexity of the operating system itself. Before
you can comfortably write assembler code to do a particular job it’s
necessary to know enough about the operating system and its
library code system call arrangements, to work out what your
assembler code should be doing. Learning about these Amiga
facilities alone is a massive challenge simply because there is so
much to understand. There is no easy road' You've just got to sit
down and work at it.

Don’t forget incidentally that it is often possible to combine both
high-level and low-level approaches in the so called mixed code
approach. Here the bulk of the code is written as normal using a
high-level language, then any routines which are particularly
critical are added as assembler patches. This gives the programmer
the best of both worlds - essentially high-level development
coupled with the absolute speed and control in the program
sections where it counts. I'll look, in some detail, at an example of
this type of coding towards the end of the book.



2:

The 68000
Chip and its
Assembly
Language

The main central processing
unit (CPU) of the Amiga is a
device known as the Motorola
68000 or Motorola 68K chip. It
has actually been available for
over a decade but in those
early days its use was
restricted to fairly high cost
systems. The 68000 has now
been superseded by more
recently developed CPUs,
including later offerings from
Motorola that now form part
of the Motorola 680x0 family.
Despite its age however the
basic 68000 is still an
extremely capable chip as its
use in the Amiga should show.

During the previous chapter |
mentioned that to write
assembly language programs
all that one needs is a simple
conceptual model of the
processor. There is no need to
understand the hardware, the
electronic connection schemes
or how all the wvarious
integrated circuits are built
and used.

What is important is that you
get an understanding of the
general internal characteris-
tics of the 68000 such as what
sort of data it can store
internally, the sizes of the
data it can work with, any
restrictions that are imposed
by the architecture (overall
logical design) of the chip and
so on. This purpose of this
chapter therefore to build a
type of conceptual picture of
the 68000 microprocessor,
discuss the features which are
relevant to the writing of
assembly language programs,
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and then introduce you to the actual operations that the processor
can perform. Since most computer users are exposed to the ideas of
bits, bytes and memory right from the time they start taking their
first steps with BASIC | will assume that these terms are familiar.
External memory, whether it be RAM or ROM can, as you therefore
doubtless know, be best thought of as a large array of individually
addressable storage slots which may be identified by a memory
address. Obviously there is no point having memory connected to
the system if the microprocessor has no means of accessing it and,
as you'll see from the following description, the 68000 does indeed
provide the appropriate mechanisms.

A Schematic 68000 Model

The 68000’s internal registers are split into two basic groups,
address registers and data registers, and registers of each group are
numbered from O to 7. Data registers are therefore labelled as dO,
dl, d2...d7 (or D1, D2... etc), with the corresponding address
registers labelled asa0 or A0 and so forth. Address register a7 has a
special purpose in that it serves as the microprocessor’s stack
register and is set up to point to an area of memory that can be
used to store information on a last-in-first-out basis (LIFO). Because
of 68000 architecture restrictions the stack has to be located at an
even-numbered memory address. There are in fact two different
68000 stack pointers and this stems from the fact that the
processor can operate in two modes — user mode and supervisor
mode. Since it is convenient for each mode to have its own stack
the 68000 has been designed so that register a7 behaves like two
separate registers and stores both a user mode stack pointer and a
supervisor mode stack pointer. Mode related issues are transparent
for the purposes of the programming which we shall be involved
with in this book.

Each 68000 register can hold a four byte (32-bit) number and
amongst its other facilities the processor is able to move such
numbers between its internal registers, between a register and a
memory location (and vice versa). The 68000 can also move
external data held in memory from one location to another.

One of the most distinctive features of the 68000 is the flexibility
of its registers. Although they can hold 32-bit (long word) values
the processor can, for many operations, use the address registers to
work with 16-bit values (words) and the data registers can in fact
work with either 32-bit values, 16-bit or 8 bits. Similarly there are
few restrictions on what you can, or cannot, use the contents of
such registers for. If, for instance, you wish to copy the contents of
a data register into an address register the 68000 lets you do it.
Having said that, it is usually better to use address registers for
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storing and working with memory addresses and data registers for
data orientated operations because each of the groups are better
suited to their design-chosen purposes. When working with
instructions that may involve byte, word or long word values it is
often necessary for the assembly language programmer to identify
the size that should be assigned to a given value. As you’ll see later
the 68000 conventions are based on placing .b, .w or .l after the
instructions. The 68000, because of its internal architecture, does
however have a limitation on the address values that it uses when
accessing word or long word addresses because the address must
be even (word aligned). Assemblers take care of much of the word-
alignment problems automatically and if, for example, you set aside
space for a long word variable, the assembler will usually ensure
that it gets allocated an even address.

The 68000 also contains a 32-bit program counter which is a
register used by the microprocessor to determine the address of
the next instruction to be executed. Under normal conditions the
program counter is automatically incremented as instructions are
read and acted upon, hence instructions contained in memory are
executed in sequence, ie one after another. An important part of
microprocessor programming however revolves around a number
of instructions which can alter the contents of the program counter
and the result of doing this has far reaching implications. By
changing the program counter address it is possible to cause the
microprocessor to get its next instruction from anywhere in
memory (as opposed to getting the instruction next in sequence in
memory), the result of which is that the execution of the program
can jump from one part of the program to another.

The fact that these jumps can be made conditional on the state of
various processor flags means of course that the processor can
make intelligent flow control decisions based on the data with
which it is working. A program might for instance compare two
numbers and, on the basis of the result, execute (or perhaps not
execute) a particular set of instructions.

The 68000’s Status Register

Another important 68000 register is the status register which is
actually divided into two eight bit registers known as the system
byte and the user byte. The system byte is only accessible in
supervisor mode and contains a number of system related bitfields,
such as interrupt masks, which we will not be concerned with.

The user byte on the other hand is vitally important because it
contains flag bits whose values are set and cleared according to the
results of particular instructions. Five flags are available and these
provide single bit true/false type detection of the processor
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conditions known as carry (C), overflow (V), zero (Z), negative (N),
and extend (X). The carry bit holds the carry from the most
significant bit produced by bit shifting or arithmetic operations.
Like many processors the 68000 inverts the carry bit after
subtraction and so with subtraction the carry flag actually behaves
as a borrow flag. The zero flag is set high (ie set to 1) when an
operation produces a zero result. If, for example, the result of
adding two numbers together produced a zero then the 68000’s
zero flag would be set to 1. The negative bit, sometimes called the
sign bit, always takes the value of the most significant bit of the
result. It can be used to good effect when working with operands
that are in a form known as signed two's complement but is also
frequently used just as a most significant bit indicator. The 68000’s
overflow and extend flags are also primarily used for arithmetic
applications. Not all instructions, incidentally, affect all flags as
you'll see when we start looking at typical instructions.

Addressing Modes

One of the most powerful features of the 68000 instruction set is
the rich variety of addressing modes that are available. Most
processor instructions work on a piece of data (called the operand)
and this data has to be stored somewhere. In short, many
instructions will use some real or implied source address, do
something, and then transfer the result to its destination address.
The processor’s addressing modes enable these source and
destination addresses to be specified. With the 68000 there are
eleven basic addressing schemes and, for completeness, here are
the names:

1. Inherent

Register

Immediate

Absolute

Address register indirect

Address register indirect with displacement

Address register indirect with postincrement
Address register indirect with predecrement

e A A o

Address register indirect with index and displacement

._
=

Program counter relative with displacement

—
—

Program counter relative with index and displacement
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bits 31 16 15 7 0
do
dl
d2
DATA REGISTERS d3
d4
ds
dé
dz
bits 31 16 15 7 0
a0
al
a2
ADDRESS REGISTERS a3
a4
as
a6
STACK POINTER REGISTER a7
(functions as two separate registers so that user and supervisor
modes can maintain individual stack areas)
PROGRAM COUNTER REGISTER PC
FLAGS XNZVC
bits 15 43210
STATUS REGISTER

Figure 2.1. Schematic model of the Motorola 68000 microprocessor.
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Inherent addressing means that the instruction itself implies the
location of the operand. Register addressing implies that the
operand resides in one of the 68000’s internal registers. Absolute
addressing means that the address of the operand is located just
after the instruction in memory whereas immediate addressing
implies that the operand itself is located just after the instruction
in memory.

Indirect addressing is a very powerful concept and on the 68000 a
variant called register indirect addressing is used. In short an
address register is used to specify the address of the operand. In
addition to these straightforward addressing modes it is possible to
specify displacements, to auto-increment or auto-decrement an
address by 1, 2, or 4 bytes (handy for stepping through lists of 1, 2
and 4 byte data items) and to write program counter relative code,
which is necessary when writing truly relocatable code. It’s not
advisable to explain all of these addressing modes at the present
time and such descriptions are left to later chapters where various
addressing schemes can be explained within the context of some
real programs.

68000 Instruction Classes

The 68000 instruction set is large and almost all sensible
addressing modes can be used with any instruction. As was the
case with the 68000’s addressing modes it is not a useful exercise,
either now or later, to list and discuss each instruction. Such
discussions, if made, would in fact fill a complete book by
themselves. It is obviously necessary however to have some
understanding of the general types of things the 68000 can do
before we start looking at actual programs so here is a very brief
overview of the type of operations supported.

Data Movement

The 68000 has a large number of instructions which allow the
transfer of data to and from memory and/or the 68000
microprocessor’s internal registers. For example, the instruction:

move.b dO, di

transfers the lower eight bits of data from register dO to register
d1l. This is an example of register addressing.

On the other hand:
move.l #0, di
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places a zero value in register d1. The hash # sign indicates an
operand source addressing mode known as immediate addressing.
In terms of the final 68000 instruction this means that the operand
(in this case a 32-bit zero value) is stored immediately after the
move.l instruction code.

Data can also be moved to memory locations so to move the full 32-
bit contents of register dO to a memory location which has been
given the symbolic name _DOSBase you would use this instruction:

move.l dO, _DOSBase

Arithmetic and Logic Instructions

The 68000 supports a standard set of logic and arithmetic
operations which allow it to perform addition, subtraction,
multiplication and addition. In addition to this it also supports all
of the common logic operations (AND, OR, XOR etc.) As an example,
the instruction:

add.1 do, di

adds the full (32-bit) contents of data register dO to the contents of
register d1.

Flow Control Facilities

Without flow control instructions a processor would only be able to
execute program instructions sequentially. The ability to execute
different parts of a program under different input/data conditions
is fundamental to the nature of computing so the 68000, like all
other processors, provides a number of useful mechanisms.

The 68000 provides both conditional and unconditional
branch/jump type instructions for transferring control from one
part of a program to another. One such instruction is called beq
(Branch on EQual to zero) and this is a flow control branch which is
only taken if the 68000's zero flag is set. To use this instruction to
conditionally branch to a symbolic address called EXIT one would
write:
beq EXIT

Unconditional branch/jump instructions are also available and I'm
always reminded when | discuss this particular area about BASIC’s
Goto instruction. This got the blame for helping programmers to
produce tangled web, spaghetti type, programs which no one could
understand, debug or alter. Goto is now defunct within the world of
high-level languages, discredited and largely unused. Any
competent programmer however will tell you that gotos can be
used properly and can result in tidy well structured programs. The
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difficulty is of course that it is only too easy to use the goto
statement in an undisciplined way, and it's that which leads to
program structure problems.

Why have | mentioned the goto at this time? It’'s because it has a
strong connection with the branch and jump instructions of the
68000 processor. Programming at low-level then has all the
disadvantages, yet none of the advantages, of the primitive high-
level language facilities which have long since been superseded by
forms which encourage the programmer to produce, or at least
facilitate the production of, tidier programs. When you program
using 68000 assembly language, or any other assembly language
come to that, you'll find no such encouragement. To a large extent
any structure and tidiness in the code will have to come from you
the programmer.

Subroutine orientated branch and jump instructions are also
available on the 68000 and these automatically store a return
address on the stack. After a subroutine call has been executed this
return address is used to transfer control back to the main part of
the program.

Other Instructions

Instructions are provided which allow the 68000 to test, set, and
clear individual bits and to rotate and shift operands. There are
powerful address calculation instructions, automated loop
instructions, and even instructions which allow data areas to be
allocated within stack space as subroutine calls are made. A variety
of instructions are also available for comparing particular operand
values, which set the appropriate status register flags.

Assemblers

This section discusses the functions performed by assemblers,
starting with features that are common to all assemblers and then
considering some of the capabilities of more sophisticated
packages.

An assembly language program consists of a number of statements.
Some statements will correspond directly to 68000 instructions,
others will be assembler-orientated directives known as pseudo-
operations or pseudo-ops. Program lines may contain as many as
four fields — a label, a mnemonic (which represents an instruction
op-code), an operand or address field (which, if present, will be the
data that the instruction acts on), and a comment. Here are some
typical assembly code lines to illustrate the format. Don’t worry
about what the instructions are doing, it's the general layout of the
program lines that is important, not the details:
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*
; an example assembly language code fragment
*
OpenLib move.l library_name,al get library name

move.l _IntuitionBase, dO get library base value

rts
Labels Mnemonics Operands Comments field

Comments

Comments are optional and do not need to be present. They are
added for the same reasons that REM statements are added to BASIC
programs, to provide in-line documentation, lines to separate
routines etc. Assemblers vary in how they delimit comments but
usually lines which begin with an asterisk will be treated as a whole
line comment, any characters after a semicolon will similarly be
ignored, and any text after the operands field will, providing it is
separated by one or more spaces, usually also be treated as a
comment.

Labels

Labels similarly do not have to be used but, if they are used, they
normally have to be placed at the start of the line (some assemblers
are quite fussy about field placement). Many 68000 assemblers
adopt a convention which allows white space to signify the end of
the label (as in the above example) but also allow the label to start
at a position other than the first character of the line providing it is
terminated with a colon (:).

Each byte of each instruction or data item in an assembler program
has, by virtue of its position in the program, an address by which it
can be identified. Internally the assembler keeps track of this
numerical position information by using a location counter.
Referring to places within a program using such numbers is
awkward because it means the programmer has to remember the
lengths of each instruction, so labels can make life a lot easier. It
does of course also lead to far more readable code. In the above
fragment the programmer can use OpenlLib rather than having to
work with some relatively meaningless numeric value.

Labels can also appear in the operand fields and this, as the EXIT
label in the following fragment illustrates, is commonly used to
specify a location to jump or branch to:
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OpenLib move.l library_name,al get library name
move.l -IntuitionBase,d0 get library base value
beq EXIT test result for success
CALLSYS CloselLibrary,_ AbsExecBase

EXIT rts logical end of program

Programmers use labels to identify space set aside for variables and
static program data, the starts of both the program and particular
routines, entry and exits points, jump/branch positions etc. Given
the purpose of labels in an assembly language program it should be
obvious that it is best to use labels that are meaningful, as OpenLib,
EXIT, and library_name in the above example should show. Labels

like X12ZB or ICYR2Y4ME are, of course, less than useful.

Label Conventions

The conventions which assemblers expect do vary, sometimes
considerably. Many assemblers for instance will place restrictions
on the lengths of labels and on the characters which may be used
within them. The leading character must often be a letter and
usually only a few non-alphanumeric characters are allowed. Many
assemblers will allow long labels, others may not, and some may
allow their use but truncate them without warning. Modern day
assemblers now provide local label support and Devpac for
instance adopts a convention whereby a label beginning with a
period (or optionally an underline) will be attached to the last non-

local label:

OpenLib  move.l library_name,al get library name
move.l IntuitionBase, d0 get library base value
beq JEXIT test result for success
CALLSYS CloseLibrary, AbstExecBase

JEXIT rts logical end of program

Devpac, to provide compatibility with other 68000 assemblers, also
allows strings of digits terminated with a $ sign to identify local
labels. Irrespective of the conventions the benefits are the same - it
is possible to re-use commonly required labels without the risk of

name clashes.

With older assemblers if, for instance, you had three routines
similar to the above fragment within the same program it was
necessary to use say EXITI1, EXIT2, EXIT3 or some other name
convention to avoid causing duplicate label errors. Obviously an
assembler, since it has to equate each label to a specific address,

cannot allow the same label to be defined twice within a program.
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Assembler Directives

These are the pseudo-ops mentioned earlier and are used to define
symbols, designate areas of memory for data storage, place fixed
values in memory and so on. Directives also exist for more
mundane operations such as controlling the listing and error
reporting facilities of the assembler. Once again, conventions are
going to vary from assembler to assembler but the detailed
specifics will of course be fully documented in your assembler
manuals.

Having said that, a few pseudo-ops do need to be dealt with
because they will be used extensively within the book.

The EQU Equate Directive

This allows the programmer to define a label with a specific
numerical value. For instance:

NULL EQU 0
TRUE EQU 1
FALSE EQU 0
SPACE EQU 32

Most assemblers will allow you to define one label in terms of
another or in terms of a numeric expression:

OFFSET EQU 10
STRUCT EQU 4+0FFSET

None of these EQU type definitions cause the assembler to create
any code. All that happens is that the definition supplied gets noted
internally and from that point on the programmer is free to use the
label wherever they would otherwise have needed to use the
appropriate numerical value. Other advantages, in terms of
program maintenance, also exist, because if you alter a label at the
front of a program that new definition is then automatically
updated wherever the label has been used. C programmers use the
#define C preprocessor facility in much the same way.

Storage Allocation Directives

All assemblers recognise a set of directives which allow you to
reserve specified amounts of memory and initialise locations, or
sets of locations, to particular values. It is usually possible to
specify bytes, words or long word allocations by appending .b, .w,
or .l to a directive. A ds (define storage) directive will, when written
as ds.l, allocate space for a number of four-byte (long word) values.
So to reserve four bytes of uninitialised space for a variable called
_IntuitionBase we could use:

_IntuitionBase ds.l 1
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Directives will also be available for placing constant values in
memory. The following statement uses dc.b, the byte form of a
define constants directive, to store the numerical equivalents of the
characters intuition.library plus a terminal NULL (zero) character in
a set of memory locations whose start address has been labelled as
intuition_name:

intuition_namedc.b 'intuition.library',NULL

Note: all microprocessor data is represented by numbers and so to
develop text-orientated programs it has been necessary to devise
codes whereby each character is represented by a number. Several
schemes have been developed but the one used more than any
other is called the American Standard Code for Information
Interchange (ASCII). You'll find the details in Appendix C.

Operands and Addresses

Most assemblers assume that all numbers are decimal numbers
unless otherwise stated but can accept binary, octal, and
hexadecimal numbers if suitably identified. The $ sign, for
instance, is frequently used to specify hexadecimal numbers.
Modern assemblers offer great flexibility in terms of the complexity
of the numeric expressions they accept and many provide
multiplication, division, addition, subtraction, logical operations,
use of parenthesis etc. Assemblers which support the generation of
floating point coprocessor code will also provide provisions for the
use of floating point constants.

ASCII character constants, as illustrated in the previous section’s
dc.b directive example, are also allowed with quotes or double
quotes being used to delimit the start and the end of the set of
characters.

Macro Assembly

You frequently find that particular sequences of instructions crop
up again and again. Macro assemblers, such as Devpac, allow you to
assign names to such instruction sequences and when the name is
encountered the assembler automatically expands it to produce the
original set of instructions. Nowadays this facility is not restricted
to predefined, absolutely fixed, instruction sequences — macros can
be used which contain parameter placeholder markers. When the
macro is used the parameters provided for that particular instance
are inserted into the code that is generated. Macros allow assembly
language programming to be done at a significantly higher level
than was previously possible and they are in fact an essential part
of Amiga assembly language programming owing to the fact that a
great many pre-defined macros have been made available to the
programmer in the system header files. You’ll find many examples
of macros being used in later chapters.
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Conditional Assembly

Most assemblers provide directives which allow specified parts of a
program to be assembled, or not assembled, depending on
specified conditions. For instance the single standard start-up code
source file provided by Commodore includes changeable constant
declarations which allow the automatic generation of a number of
different start-up moduie versions. Programmers often include
debugging code in their programs but conditionally remove the
relevant sections of code in the released versions of their
programs.

A Commercial Package

Assembler programs, as we've already seen, are not used in
isolation. An editor is needed to create the program, and a linker
plus any number of other program support tools will also be
needed. On the Amiga it's also necessary to have the system header
files available. So, whilst all assembler packages will have some
common ground, there are likely to be significant differences in
terms of the overall environment offered to the programmer. This
applies both in terms of the conventions used and in the overall
environment integration (which affects the ease of use). To
illustrate the features that a modern Amiga assembler environment
will offer I've chosen to look at what | consider to be the best
assembly language programming environment available on the
Amiga at the current time, HiSoft’s Devpac 3.

Devpac

HiSoft’s 68000 Devpac Amiga assembler package has been around
for quite a few years and during that time a large user-base has
formed. Most Devpac users will tell you that the package is popular
for two main reasons. Firstly, it is a robust program which does the
job that it is supposed to do. Secondly, it has proved to be a stable,
well supported, product. If you are a serious user, and most Amiga
assembly language programmers are, then those qualities are
obviously important.

The latest version of Devpac, called Devpac 3, has a number of
advantages over earlier versions. The editor has been greatly
enhanced and it now offers multiple file editing with full mouse-
controlled cut & paste facilities, enhanced menu selection and a
new Workbench 2 style look, even when running under Workbench
1.3. Especially useful editor features include the ability to open
individually scrollable multiple windows on the same file,
bookmark set and locate facilities, a macro recording facility for
memorising complex keypress sequences, and powerful
assembler/debugger integration options.
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The assembler supports the 68000-68040, 68332, 68881/2 and the
68851 memory management unit (MMU) chips. It can produce S-
records (an output form used by EPROM programmers), can
generate and process pre-assembled include files and can create
more source-code tracking debugging info. The Devpac debugger
has a flexible, user-configurable, multi-window arrangement and
can handle multiple files.

Since the Devpac environment has proven to be so popular (there
are around ten thousand Devpac users) | will try and explain the
purpose, and the benefits, of some of the Devpac facilities. The
main HiSoft tools are the editor, assembler, and the debugger.

The Devpac Editor

The Devpac editor, and its menu system, has been well planned and
makes extensive use of Workbench 2 style requesters and gadgets.
You’'ll find action gadgets and buttons, check-box gadgets, radio
buttons and gadgets that cycle through various options as they are
selected. File operations now use the ARP (or the ASL in the case of
the Workbench 2) requester so all file operations have become a lot
easier. One of the big changes with the latest editor is that it now
lets you work with multiple files and even allows you to open more
than one window in the same file. This is handy for doing multiple
copy and paste operations between different areas because you do
not have to keep moving back and forth between the source and
destination sections.

An Edit menu provides clipboard cut/copy/paste facilities and with
Devpac 3 these can now be done by proper mouse-controlled
marking, ie by holding the left mouse button down and wiping the
mouse over the area of text or program-code you wish to mark for
copying. Being able to view, and copy sections between, different
windows of different projects is a major plus for the new editor.
The editor also includes a Search menu which offers easy to use
requester-based find and find & replace facilities, and a bookmark
scheme which allows you to use up to ten place-markers within a
project. A macro facility which lets the editor learn useful
sequences of keystrokes has also been provided. These editor
macros are nothing to do with the 68000 orientated code macros
discussed earlier in this chapter.

A Settings menu allows you to set the editor and assembler controls
and define the usual types of global settings for tab size, end-of-
line behaviour, auto indenting, automatic back-up creation and so
on. Window arrangement is controllable by a menu which allows
the view arrangements of the various project windows to be altered
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(stacked, diagonally offset etc.) Most editor settings can be saved to
disk and when the editor has been asked to create project icons,
things like bookmark settings can also be stored with the project.

The assembler options themselves are grouped into three separate
requesters which are called up by selecting one of three items on
the assembler settings sub-menu. A control requester provides
control over basic assembler operation, source and destination file
paths, listing control etc. The Options requester gives access to the
large number of more technical assembler settings (identifying
processor, coprocessor and MMU types, ensuring PC-relative code,
producing local label underscoring and so on). The third requester
provides a range of assembler optimisation settings.

As with earlier Devpac editors the Devpac 3 version provides
automatic location of errors in the source after assembly via find
error, previous error and next error menu options. Create the
source code using the editor and select assemble from the program
menu. Edit/assemble until the assembly process is error free and
you’'ll then be able to run the code directly from the editor’s
program menu. In short it is possible to create, assemble, debug,
run and save your code without ever leaving the Devpac
environment!

Devpac 3, as you may have gathered, has more options than space
permits me to talk about - you are, for instance, also able to make
the assembler and/or debugger resident, control font usage, set the
editor’s printing parameters and make projects read only, so that
you don’t inadvertently alter a file that you've opened to use just as
a clipboard source document. Many options have Amiga-key menu
shortcuts or Shift, Ctrl or Alt keyboard sequences so experienced
users can bypass the sometimes time-consuming menu operations
if they so choose.

The Devpac Assembler

Devpac’s assembler is called GenAm and it is a fast full-spec
offering which supports parameter driven macros and which can be
used both from the editor menu or as a stand-alone program.
GenAm has all the bells and whistles expected of a modern day
assembler - it provides comprehensive expression handling and
supports *, /, +, -, =, bitwise and/or/xor/not, left and right shifting
and the usual inequality operators. Like many assemblers it allows
decimal, hex, octal, binary and character constants but also offers
floating point constants for 68881/2 coprocessor applications.
Devpac allows the use of local labels and, by default, all label
names are significant to 127 characters.
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As far as assembler control is concerned GenAm has all the usual
options. If for instance you want to suppress warnings, ignoring
multiple-file includes, eliminate symbol-table and macro listing and
create a runable (executable) end file, then GenAm will let you do it.
At one time | would have said that support for the floating point co-
processors etc, was not going to be that useful to the average user,
but times are changing and with some of the excellent new
accelerator boards which are being offered to Amiga users this new
Devpac is ideal for ray-tracers and anyone else who wants to try
their hand at programming their 68881/2 chips directly.

One very handy feature of the new Devpac offering is that it
supports the use of imported symbol tables, ie include files that
have previously been read into the assembler and pre-assembled to
create a file containing all the relevant definitions. In fact when
searching for an include file GenAm looks first for a file of the same
name but with a .gs extension. If such a file is found GenAm will
assume that it is a pre-assembled equivalent and will use it in
preference to the file originally specified. The benefit of using such
pre-treated files is faster assembly times and Devpac’s symbol table
generation option can be used to good effect with the Amiga system
headers themselves.

The assembler can generate both executable code and linkable
code, plus the Motorola standard S-records format mentioned
earlier. It also includes a number of options for providing debug
data in its output files. SYMBOL hunks (as defined by the AmigaDOS
binary file format), LINE debug hunks (recognisable by Lattice/SAS’s
CodeProbe), and compressed HCLN chunks are all supported.

The purpose of including such data is that it enables the debugger
to make the original source-code labels visible reference points in
the disassembled code. Because the final code size is increased one
normally only includes debugging info during the program
development stages. By reassembling with the debug options
turned off the excess data can be eliminated in the final version of
the program.

GenAm has far more facilities than we can possibly mention but it
is worth pointing out that some are especially useful to the Amiga
programmer. Multiple hunks (including chip and fast) are fully
supported and there’s an INCBIN directive for including binary files,
which is useful for reading in sprite data and general screen
graphics.
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The Devpac Debugger

Programs written in assembly language are particularly error prone
and even slight coding errors can spell disaster. This being so, all
commercial assembler packages provide some type of debugging
facilities. With Devpac the debugger is called MonAm.

MonAm is a low-level debugger able to step through a program
displaying code instructions, 68000 register contents, processor
status, and memory contents in hex or ASCII form as it does so. If
you have included debug info in your program the MonAm can use
that to display your original program labels. The debugger can also
be used to look at compiler written code and, if the package that
produced the code included line number debug data, it is even
possible to view the original source code! MonAm is very powerful
and one major feature is this ability to use symbols taken from the
original program.

Four window types are defined to provide views of processor
details (register contents, flag values etc), 68000 mnemonic
disassembly, memory contents hex or ASCII, and source code. The
disassembler (a program which reads an executable program and
tries to generate the original assembly language instructions)
recognises all 68000 family processor instructions, including the
68040, maths coprocessor and MMU instructions. MonAm windows
can now be locked to allow interactive monitoring of complex data
structures and any number of source files may be loaded into each
window along with any associated line number debugging info.
Multi-module programs can therefore be single-stepped line by line
from your original source files.

Two powerful operators are provided which convert a program
address into a source-code line number and locate any part of the
program from its position in the source. Like the Devpac assembler,
the MonAm debugger program can also run as a stand alone
program but most users access it directly from the menus of the
Devpac editor program.

Other Components

As well as the editor, assembler and debugger the Devpac 3
package includes Blink, the Amiga’s defacto standard linker, a
program called SRSpilt which is an S-record splitter utility and a
utility called FD2LVO which converts Commodore FD files into
include files containing direct library vector offset data (LVO
values). You also get the all important Commodore assembly
language include files, the standard run-time and link libraries
(plus extra maths and IFF parse libraries) and some example
programs to get you started.
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Make it Easy!

This book is in no way restricted to Devpac users but it must be
said that if you have yet to get an assembler package Devpac 3 is
worthy of serious consideration. It provides some superb facilities
and newcomers will get an assembler environment which will help
make learning about, and using, assembly language just about as
easy as it ever could be!

In the last two chapters I've covered some general concepts,
introduced the 68000 to you and looked at issues related to the
writing of assembly language programs. Now it's time to put some
of these pieces together and start looking at the writing of some
simple, but nevertheless, real assembly language programs.




3:
Solving
Simple
Problems

One of the easiest ways to
come to terms with 68000
assembly language program-
ming is to look at some
programs and so this is
exactly what we shall be doing
in this chapter. Before making
a start however a few words of
warning are in order, just in
case you are expecting to dive
straight into the world of
Amiga graphics and multi-
tasking.

The plain truth of the matter
is that to explain the purposes
of a large number of the
68000 instructions we need to
start with very simple
examples which steer well
clear of Amiga operating
system issues. Unfortunately
such simple programs will, by
definition, tend not to do
much - in fact the programs
that we’ll deal with in this
chapter will not even have any
visible output when they are
run.

From a newcomer’s viewpoint
this is unfortunate. On the
face of it the prospect of
spending time examining
programs that add two
numbers together, or copy a
few bytes from one set of
memory locations to another
is hardly likely to instill a
burning desire to learn about
the 68000.

Nevertheless this chapter is
very necessary because it
illustrates the use of a number
of very important 68000
instructions. Be patient -
these examples have been
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deliberately chosen so as to illustrate the operations that you'll be
expected to know about once we get into proper Amiga 68000
programming. There are a few points to bear in mind:

. Whilst reading this chapter you may find it useful to
occasionally refer to Chapter 17 which lists a selection of
commonly used instructions, details of the 68000 processor’s
addressing modes, and various other details.

o All the examples discussed in this chapter are CLI/Shell based
programs and should not be run from the Workbench.

L Users who have access to an Amiga 68000 monitor/debugger
program (such as Devpac’s MonAm) will find it useful to enter
and run many of the examples in single-step mode. Even
though the program may have no visible output it will still be
possible to see how the various instructions affect the state of
the processor’s registers and flags.

Data Transfer

Data movement on the 68000 can be achieved with move
instructions. A number of variants exist but the basic format is:

move.<size> source, destination

If the object size is not specified then a word size (16 bit) is
assumed.

To move the contents of a location which has been given the
symbolic name X to the lowest 8 bits of register dO we would write:

move.b X, dO copy byte X to lowest 8 bits of dO

Similarly, to move the lowest 8 bits of register dO to a location
which has been labelled Y we could write:

move.b dO, Y copy lowest 8 bits of d0O to Y

One way of initialising the above X and Y variables would be to use
the byte form of the define constant and define storage pseudo-ops
(dc.b and ds.b), like this:

X dc.b 10 allocate one byte and initialise it to 10
Y ds.b 1 allocate one byte but do NOT initialise it

If we put these fragments together we can build a program which
will copy the pre-initialised 1 byte value held in location X to
location Y:
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* Example CH3-1.s

START move.b X, dO copy byte X to lowest 8 bits of dO
move.b dO, Y copy lowest 8 bits of dO to Y
rts
X dc.b 10 allocate one byte and initialise it to 10
Y ds.b 1 allocate one byte but do NOT initialise it

The program starts with X holding the value 10 and Y being
undefined. After it has been run, byte X will still contain the value
10 but byte Y will also contain 10.

Any of the data registers d0-d7 could have been used for this
program and dO was an arbitrary choice.

Nowadays most assemblers initialise ds.x statements to zeros but
from the point of view of consistent documentation it is best to
assume that such initialisation is not done. If you really want to
initialise byte Y to zero, choose the dc.b 0 pseudo-op.

The rts (return from subroutine) instruction at the end of the code
is used to return control back to the Amiga’s operating system.
Don’t worry about understanding what it does - such issues will be
discussed in detail in the next chapter. Strictly speaking even these
simple programs should terminate with register dO set to zero,
achieved by using a move.l #0, dO (or a clr.l 0,d0) instruction just
before the rts, but for simplicity this Amiga-orientated operation
has not been included in these, otherwise general,
discussions.There is in fact a much easier way to achieve the above
copy operation because the 68000 allows you to transfer data
directly from one memory location to another, like this:

move.b X, Y copy byte X to byte Y

This means that it’s possible to eliminate the use of dO as a
temporary storage register in the above program and write this
simpler version:

* Example CH3-2.s
START move.b X, Ycopy byte X to byte Y

rts
X dc.b 10 allocate one byte and initialise it to 10
Y ds.b 1 allocate one byte but do NOT initialise it

When move is used to copy a piece of data the instruction,
providing the destination is not an address register, generally
affects the flags in the user-byte 68000 status register. These flags
are variously called the user-byte flags, condition codes, or just the
status byte flags (this book will use the latter term). With move
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instructions the Zero (Z) and Negative (N) flags will be set to an
appropriate state whilst the Overflow (V) and Carry (C) flags will be
cleared.

Now that you've seen how to move 8 bit values you'll be pleased to
know that you can move word (16 bit) and long word (32 bit) values
just as easily. The following version performs a word (two byte)

copy:

* Example CH3-3.s
START move.w X, Ycopy word X to word Y

rts
X dc.w 10 allocate two bytes and initialise to 10
Y ds.w 1 allocate two bytes but do NOT initialise

Since instructions assume a word size by default it is not necessary
to include the .w size indicator on the move instruction. Example
CH3-3.s could therefore just as easily have been written as follows:

* Example CH3-4.s

START move X, Y copy word X to word Y

rts
X dc.w 10 allocate word and initialise to 10
Y ds.w 1 allocate word but do NOT initialise

Since two bytes are needed to store a word value, and since each
byte has an individual address, you might be wondering what
address the assembler assigns to the word variables. On the 68000
Amiga system words are stored in memory as shown in Figure 3.1.

TOP OF MEMORY

}

$nnnnnnnn+1 low byte

X = $nnnnnnnn high byte |<—this must be an EVEN address

v

LOW MEMORY

Figure 3.1. 68000 storage of words in memory.
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Without looking at the following solution, try to change program
Example CH3-4.s to produce a long word version. Here’s the result
you should have obtained:

* Example CH3-5.s
START move.l X, Y copy long word X to long word Y

rts
X dc.1 10 allocate one long word and initialise to 10
Y ds.1 1 allocate one long word but do NOT initialise

Four bytes are needed to store a long word value and on the 68000
these items are again stored in a particular order. Just as a word
can be expressed in terms of an upper and lower byte so we can
consider a long word as containing an upper and lower word like
this:

32 bits 16 bits 16 bits
<long word value> = <upper word> <lower word>

The 68000 stores the word components of long words in the same
way as it stores the byte components of ordinary (16 bit) words, ie
it stores the bytes of the most significant word first, so the net
result is that long words are stored in memory (Figure 3.2).

TOP OF MEMORY

f

$nnnnnnnn+3 low byte of lower word

$nnnnnnnn+2 high byte of lower word

$nnnnnnnn+1 low byte of upper word

X = $nnnnnnnn high byte of upper word [<—must be an
EVEN address

LOW MEMORY

Figure 3.2. 68000 storage of long words in memory.
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In transferring data from one set of locations to another, Example
CH3-5.s was using absolute addressing. Remember that the X and Y
labels used in the move.l X, Y instruction represent numerical
addresses.

Another way of writing the programs that we’ve just been looking at
would be to reserve uninitialised memory space for both the X and
Y variables and then explicitly initialise the X variable when the
program is run. The following example uses an additional
immediate addressing move instruction to load variable X with the
value decimal 10. By convention immediate addressing on the
68000 is signified by placing a hash (#) sign in front of the operand:

* Example CH3-6.s
START move.l #10, X initialize long word X to 10
move.l X, Y copy long word X to long word Y

rts
X ds.1 1 allocate one long word but do NOT initialise
Y ds.1 1 allocate one long word but do NOT initialise

Data Transfer Using Address Registers

You will see from the instruction code summaries provided in
Chapter 17 that the move instruction is unable to transfer data to
an address register. In actual fact a specialised form of the move
instruction, called movea (move address) is available for this
purpose and a number of differences which exist between move
and movea need to be discussed.

Firstly, like most direct address register instructions, movea can
only operate on word or long word values. Secondly, movea does
not affect any of the processor’s flags. This, for address-orientated
operations is actually a convenience not a limitation. Lastly, movea
sign-extends any word values it is working with. This means that
the uppermost bit (bit 15 of the word) will be propagated
throughout the upper 16 bits of the address register. Sign extension
was introduced on the 680x0 series to allow a form of absolute
addressing based on word addressing to be used (as opposed to a
full long word address) and you can find additional details in
Chapter 17.

Although it is not a good idea to use address registers for such
purposes we could write a word (16 bit) version of our original
Example CH3-1.s data copying program like this:
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* Example CH3-7.s
START movea.w X, a0 copy X to lowest 16 bits of a0
move.w a0, Y copy lowest 16 bits of a0 to Y

rts
X dc.w 10 allocate one word and initialise it to 10
Y ds.w 1 allocate one word but do NOT initialise it

As it happens most 68000 assemblers do allow you to use the move
mnemonic when specifying an address register so program Example
CH3-7.s actually could have been written as:

* Example CH3-8.s
START move.w X, a0 copy X to lowest 16 bits of a0
move.w a0, Y copy lowest 16 bits of a0 to Y

rts
X dc.w 10 allocate one word and initialise it to 10
Y ds.w 1 allocate one word but do NOT initialise it

The difference however is that in the case of this last example the
assembler will automatically insert a movea instruction for loading
register a0 and this means that unlike data register loading
operations the address register loading operation will not affect the
processor’s status flags. More subtle differences can also occur as
this example clearly shows:

* Example CH3-9.s

START move.w X, a0 copy X to lowest 16 bits of a0

move.w a0, Y copy lowest 16 bits of a0 to Y

rts
X dc.w $FFFF allocate one word and initialise tc FFFF hex
Y ds.w 1 allocate one word but do NOT initialise it

Here we are using a word data value which includes a 1 in the
uppermost position (FFFF hex=1111 11111111 1111). Because the
first instruction is really a movea, and because the sign bit (bit 15)
of the word $FFFF is set high then the value that movea transfers to
register a0 is FFFFFFFF hex, and not FFFF hex. Since the program
only copies the lower 16 bits of the register back to location Y this
doesn’t affect the result in this case but the instruction has of
course affected the upper 16 bits of the a0 register in a way that the
related data register version of the program would not do.
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Most 68000 coders soon get used to the flag and sign extension
implications of address register usage, use the move mnemonic for
both data and address orientated instructions, and let their
assemblers decide on the correct object code instruction.

Complementing a Value

Complementing a number means turning all the 1s present in the
number to 0 and turning all the Os present to 1. If, for example,
register dO contained the value:

d0 = 0000 0000 0000 0000 0000 0000 0000 0000 binary
ie 0 0 0 0 0 0 0 0 hex

then the complemented value would be:

do = 1111 1111 1111 1111 1111 1111 1111 1111 binary
ie F F F F F F F F hex

You should work out for yourself that if dO = 1FO1 hex then after a
long word (32 bit) complement operation dO will contain EOFE hex
(write out each hex digit in the binary form as above, invert all the
bits, and then translate the answer back to hexadecimal form).

The 68000 instruction which performs this operation is called NOT
and like many other instructions it exists in byte, word and long
word forms. Here’s a short program which uses immediate
addressing to load dO with the byte value OF hex, inverts it, and
then stores the result in a location whose symbolic name (ie its
label) is RESULT:

* Example CH3-10.s
START move.b #$F, dO initialise low 8 bits of dO to F

hex
not.b doO invert lower 8 bits
move.b dO, RESULT copy inverted dO to RESULT
rts
RESULT ds.b 1 allocate one byte but do NOT initialise

As was the case with the earlier examples, the 68000 allows us to
eliminate the use of a temporary storage register by using the not.b
instruction directly on a memory location:

* Example CH3-11.s

START move.b #$F, RESULT store value directly in RESULT
not.b RESULT invert value
rts

RESULT ds.b 1 allocate one byte but do NOT initialise
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In the above example the not.b instruction is using absolute
addressing (with example CH3-10.s the register addressing form
was used).

Addition
The 68000’s basic addition instruction uses this syntax:
add<.size> source, destination

where the result of the source + destination addition gets placed in
the destination register (in common with a great many 68000
instructions that work with two operands).

So far the instructions we have looked at have allowed source and
destination operands to be either in registers or memory. Not all
68000 instructions are that flexible and in fact the add instruction
only allows one of its operands to be in memory. You may add the
contents of a register to a memory location, or do the reverse (add
the contents of a memory location to a register). What you cannot
do however is add the contents of one memory location directly to
the contents of another.

The limitation means that for this instruction we need to use a
temporary register much as we did with our early data copying
examples. Here is an example which loads register dO with a
number contained in NUMBER1 and then adds that number to the
contents of the memory locations represented by the label
NUMBER2:

* Example CH3-12.s
START move.l NUMBER1, dO load 1st number into register dO
add.1l dO, NUMBER2 add contents of dO to value in

NUMBER2
rts
NUMBER1 dc.1 3 set initial value to 3
NUMBER2 dc.1 4 set initial value to 4

After program Example CH3-12.s has been run, the variable
NUMBER?2 contains the value 7.

Up until now I've mentioned byte, word and long word forms of
variables but have not said anything about when the various forms
should be used. As far as data items are concerned the unwritten
rule for the assembler programmer is the same as for the
programmer working in any other language, namely conserve as
much memory as possible, ie don’'t waste it by allocating
unnecessary space.
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Have a look at the internal contents of the two four byte numbers
used in the previous example:
byte 3 byte 2 byte 1 byte 0

NUMBER1 00000000 00000000 00000000 00000011 decimal 3
NUMBER2 before 00000000 00000000 00000000 00000100 decimal 4
NUMBER2 after 00000000 00000000 00000000 00000111 decimal 7
Both numbers and the final result fit comfortably into an eight bit
byte so in all honesty we did not need to use long word size

variables, bytes would have done. Here then is an improved
version:

* Example CH3-13.s
START  move.b NUMBER1, dO 1load 1st number into register dO
add.b dO, NUMBER2 add contents of dO to value in NUMBER2

rts
NUMBER1 dc.b 3 set initial value to 3
NUMBER2 dc.b 4 set initial value to 4

Only two bytes of variable storage space are needed instead of
eight in the previous example, and the byte-orientated forms of the
instructions execute more quickly as well. Programmers would
therefore say that this new version of the program was more
memory efficient, or just more efficient than the previous one.

Putting Some Pieces Together

Now let’s try something a little more complicated. We’ll set up some
space for a long word variable called NUMBER1, initialise it using
immediate addressing to some arbitrary value (I’ve used 1FFFFF
hex), increment it by 1, complement the result, and then store it in
a variable called RESULT. Here’s one program that does the job:

* Example CH3-14.s
START move.l #$1FFFFF, NUMBER1 initialise number

move.l #1, dO load dO with value 1
add.1 NUMBER1, dO increment dO copy of NUMBER1
not.1 do complement result
move.l dO, RESULT
rts
NUMBER1 ds.1l 1 space for number

RESULT ds.l1 1 space for result
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Depending on what was actually required there are many ways that
a program similar to the above could have been written. It might,
for instance, have been appropriate to place the original value
directly in the locations assigned for the result, and do the addition
and complement operations on the result locations like this:

* Example CH3-15.s
START move.l #$1FFFFF, RESULT initialise number

addi.l #1, RESULT increment value
not.1 RESULT complement result
rts

RESULT ds.1 1 space for result

In the above example a special form of the add instruction, addi, is
being used. This allows an immediately addressed source operand
(in this case 1) to be added directly to the destination operand. If
you take a sneak preview of the add addressing mode details in
Chapter 17 you’ll find that the normal add instruction couldn’t have
been used in Example CH3-15.s anyway because to use immediate
addressing the destination would need to be a data register.
However, as is the case with a number of instructions, most 68000
assemblers do let you write statements such as:

add.1l #1, RESULT increment value

and then automatically translate the instruction to:
addi.l #1, RESULT increment value

so program Example CH3-15.s could, after all, be written as follows:

* Example CH3-16.s
START move.l #$1FFFFF, RESULT initialise number

add.1l #1, RESULT increment value
not.1l RESULT complement result
rts

RESULT ds.1 1 space for result

Quick Instructions

For immediate operands within limited ranges the 68000 offers a
number of quick instructions. Instead of using real immediate
addressing, where the operand is placed immediately after the op-
code in memory, these instructions have a data value buried into
the instruction op-code itself. The moveq instruction for instance
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uses a data register as the destination and allows 16 bit operands
to be specified (it does however sign extend the data to long word
size).

To load register d2 with the value 3 for instance we could write:
moveq #3, d2 load d2 with value 3

Add and subtract quick instructions also exist and these allow
immediate data in the range 1-8 to be specified.

To increment by 4 the contents of a memory location whose
address has the symbolic name RESULT we might, using absolute
addressing, write:

addq #4, RESULT

If we choose to load the address of RESULT into register al we
could instead use the 68000’s indirect addressing scheme to
specify the destination address:

move.l #RESULT,a1 load a1 with address of RESULT

addq #4,(at) add 4 to the contents of the byte
‘pointed to' by register a1

where the destination operand’s (An) notation is the 68000
assembly language form for specifying an indirect address.

Another method of loading register al with the address of the
RESULT variable is to use the more specialised Load Effective
Address, lea, instruction and if this is done with the above
fragment the code ends up looking like this:

lea RESULT, ail load a1 with address of RESULT

addq #4, (at) add 4 to the contents of the byte
‘pointed to' by register at

The earlier loading of the address of the RESULT operand into al
using an immediate addressing move instruction served us well
enough but in general the lea instruction is a far more flexible
alternative. Much more use will be made of the lea instruction later
in the book.

Going Loopy

Program loops enable a programmer to create a repetitive subset of
instructions, ie a set of instructions that can be repeated a specified
number of times. Most loops have up to four identifiable sections:

e An initialisation section which sets up, ie initialises, any
variables.
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* A processing section, usually called the main body of the loop,
which does the real work.

e A control section which decides whether or not further iterations
(passes through the loop) are required.

e A terminal section which carries out any post-loop processing
that may be needed.

There are in fact two types of repetitive loops in common use. With
post-test repetition, the control test comes after the main body of
the loop. With pre-test repetition the control test comes before the
main processing section.

— . —
(EXIT CONDITION)— PROCESS
l false
PROCESS
—(EXIT CONDITION)

I false
| l true

Y

pre-test repetition form post-test repetition form

Figure 3.3. Flowcharts of pre-test and post-test loop arrangements.

The difference between these two forms, namely the location of the
control test, has an important practical implication. The main body
of a post-test style loop will always be executed at least once but if
the conditional test used with a pre-test loop is satisfied
immediately then the body fragment will never be executed. By way
of comparison, BASIC’s WHILE/WEND loops are pre-test forms, but
BASIC's DO/WHILE loops are post-test. Despite the fact that many
debates have occurred concerning the merits of the two schemes, in
practice both have their uses.

Post-test repetition, as far as the assembly language programmer is
concerned, does tend to produce shorter code. The following
fragment uses register dO as a loop counter (initialised to 10). With
each pass through the loop the value in dO is decreased by 1 and
following this decrement operation the control portion of the loop
uses a branch on not equal to zero, bne, instruction to either
branch, or not branch to the specified location. This instruction is
one of a number of flow control facilities provided by the 68000
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and it looks to see if the processor’s zero flag has been set. If it has
not, the specified branch is taken and the net result is that the loop
code is executed until such time as dO becomes zero (ie the loop is
executed ten times):

moveq #10, dO initialise dO as a counter

LOOP do something unwritten main body
subq #1, dO decrease counter
bne LOOP repeat loop if count not zero

To write this loop in pre-test form requires that we both invert the
sense of the exit condition test and add an extra instruction, an
unconditional branch (bra) which always forces control back up to
the top of the loop:

moveq #10, dO initialise d0O as a counter
LooOP beq LOOP_END

do something unwritten main body

subq #1, dO decrease counter

bra LOOP

LOOP_END subsequent code

The branch on some condition instructions, collectively written as
bcc (where cc represents the testable condition) are an example of
relative addressing. The object code created for these instructions
does not include an absolute address to branch to - instead a
displacement from the current value of the program counter is
provided. This is the computer world’s equivalent of someone
knocking on your door and asking where one of your neighbours
live. You, instead of saying “they live at number 66" (an absolute
address), reply by pointing the caller in the right direction saying
“they live six doors further down the road”. What you’ve done is
give a displacement which could have been positive (eg six doors
further up the street) or negative. Relative addressing therefore
specifies an address by providing the difference between the
current address held in the 68000’s program counter and the
address you wish to reach. A great many testable conditions are
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available for conditional branch instructions. Most will be covered
(in context) during the course of the book but Chapter 17 provides
summaries of the allowable options, should you care to review
them.

String Conversion

In this section | want to write a program a little more involved than
previous examples have been. It concerns the translation of text
strings from one form to another. One way to represent a text
string in memory is to store a count of the number of characters
followed by the characters themselves. In an assembly language
program such static (permanent) strings can be set up using dc.b
directives like this:

TEXT dc.b 5,"APPLE"

and in memory this would lead to the situation shown in Figure 3.4
below.

TOP OF MEMORY

!

snnnnnnnn+5 'E'
snnnnnnnn+4 L'
$nnnnnnnn+3 ‘P!
snnnnnnnn+2 ‘P’
$nnnnnnnn+1 ‘A’
TEXT = $nnnnnnnn char count (5)
LOwW MLEMORY

Figure 3.4. One way of representing a string in memory.

Another convention which is also in use, and equally popular, is to
use a special symbol to mark the end of the string. The C language
stores strings in this way and instead of a count being used, a NULL
(zero) value is placed at the end of the string. The assembly
language programmer can do a similar thing like this:

TEXT dc.b "APPLE",0
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and this would result in the string being stored in memory as per
Figure 3.5.

TOP OF MEMORY

}

$nnnnnnnn+5 0

snnnnnnnn+4 'E'

$nnnnnnnn+3 L'

snnnnnnnn+2 ‘P!

snnnnnnnn+1 ‘P!

TEXT = $nnnnnnnn ‘A’
LOwW jLMORY

Figure 3.5. The C style way of representing a string in memory.

Now let us suppose that a string has been declared in a program
using the former <count><characters> convention and that we want
to write a routine which will convert that string to the alternative
form whilst copying it to some alternative locations.

By loading register a0 with the address of the first byte of the
original string the count can be loaded into register dO using the
indirect addressing scheme mentioned earlier:

lea TEXT, a0 put address of string in a0
move.b (a0), dO copy count to register dO

At this point we know how many characters are in the string - it's
given by the value now in register d0.

In light of the fact that we are going to copy the string , and so will
need to reserve some space to store it, let’s further assume then
that another declaration has been made in our program:

COPY ds.b 6 reserved for copy of string

and that we shall load the address of this buffer area into register
al using another lea instruction like this:

lea COPY, at address of copy buffer in at
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The position we’ve now reached in our preliminary planning is that
we have a0 pointing to the start of the source string (its count byte)
and al pointing to the destination area and we have this much of
the framework of a suitable program:

lea TEXT, a0 put address of string in a0
move.b (a0), dO copy count to register dO
lea COPY, ail address of copy buffer in ai
copy and convert the string

rts

TEXT dc.b 5,"APPLE"
COPY ds.b 6

Bearing in mind that the first byte of the source string should not
be copied, because it is not part of the text string itself, it’s not too
hard to see that if we increment the address in a0 by 1 then that
register will then be pointing to (ie contain the address of) the first
real character of the source string. By using an addq.l instruction to
increment the source pointer and by including a few appropriate
notes about what we are trying to do our program framework grows
into this form:

lea TEXT, a0 put address of string in a0
move.b (a0), dO copy count to register dO

addq.1l #1, a0 skip to first real character
lea COoPY, at address of copy buffer in ai

copy dO0 characters of
the text string from
source to destination

insert a terminal NULL
character at end of string

rts
TEXT dc.b 5,"APPLE"
COPY ds.b 6

The loop itself is surprisingly easy to code. Firstly, we use indirect
addressing to copy the character. Remember the first line of the
following fragment is saying copy the contents of the byte WHOSE
ADDRESS IS IN REGISTER AO TO THE LOCATION WHOSE ADDRESS IS
IN REGISTER Al. Secondly, we increment both the source and the
destination pointers (ie registers a0 and al) by 1. Thirdly, we
subtract 1 from the count value held in dO.
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When the value in dO reaches zero we’ll have copied all of the
characters in the string and this means that we create our loop
using the branch on not zero type conditional branch instruction
mentioned earlier:

LOOP move.b (a0), (at) copy character

addq.1 #1, a0 move to next source character
addq.l1 #1, at move to next destination byte
subq.b doO decrease character counter
bne LOOP loop until dO is zero

Now when we add these instructions into our existing framework
things start to look up:

lea TEXT, a0 put address of string in a0
move.b (a0), dO copy count to register dO
addq.l1 #1, a0 skip to first real character
lea COPY, at address of copy buffer in ai
LOOP move.b (a0), (a1) copy character
addq.1 #1, a0 move to next source character
addq.l #1, at move to next destination byte
subq.b #1, doO decrease character counter
bne LOOP loop until dO is zero

insert a terminal
NULL character at
end of string

rts
TEXT dc.b 5,"APPLE"
COPY ds.b 6

All that remains is for us to store a terminal NULL (zero) value at
the end of the destination string, which corresponds to the terminal
processing section of the control loop mentioned in the general
loop discussions. Since the loop will have already incremented the
al pointer this is easily done with:

move.b #0, (al) add terminal NULL

and by adding this instruction we get a complete program:
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* Example CH3-17.s

lea TEXT, a0 put address of string in a0
move.b (a0), dO copy count to register dO
addq.l #1, a0 skip to first real character
lea CoPY, ai address of copy buffer in at
LOOP move.b (a0), (a1) copy character
addq.1 #1, a0 move to next source character
addq.1 #1, ai move to next destination byte
subqg.b #1, doO decrease character counter
bne LooP loop until dO is zero
move.b #0, (al) add terminal NULL
rts
TEXT dc.b 5,"APPLE"
COPY ds.b 6

These types of loop-orientated conversion and copying operations
are used in all manner of applications and so it’s not surprising that
the 68000 offers some special facilities for writing such loops
efficiently.

To start with, the processor includes special indirect addressing
modes which allow the pointer increment operations to be done
automatically. They are called address register indirect with post-
increment, and address register indirect with pre-decrement. In the
first case the increment operation is done after the address is used
and in the second case the decrement occurs before the address is
used. The reason why this arrangement was chosen will become
obvious after the next chapter but for now accept it as 68000
magic.

Both autoincrement and autodecrement modes can adjust an
address by 1, 2, or 4 depending on whether bytes, words, or long
words are being handled. In the case of the example I've been
developing bytes are being transferred and the increment needed is
of course 1.

The 68000 programmer specifies the indirect autoincrement mode
by placing a plus sign after the usual indirect reference, for
example:

move.b (a0)+, dO copy count and increment pointer

If, incidentally, we were interested in using the auto predecrement
mode we’d use this type of syntax:

move.b -(a0), doO decrement pointer and copy count
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In the main body of the loop outlined in Example CH3-17.s both
source and destination pointers (registers a0 and al) need to be
incremented and with our newly discovered addressing mode this
becomes simplicity itself:

LOOP move.b (a0)+, (at1)+ copy character and increment
pointers

If we put these instructions in place the result is as follows:

* Example CH3-18.s

lea TEXT, a0 put address of string in a0

move.b (a0)+, dO copy count and increment pointer

lea COPY, at address of copy buffer in a1
LOOP move.b (a0)+, (al)+ copy character and increment

pointers

subq.b dO decrease character counter

bne LooP loop until dO is zero

move.b #0, (al) add terminal NULL

rts

TEXT dc.b 5,"APPLE"
COPY ds.b 6

Not only is the program shorter but the execution time will have
been reduced because the autoincrement instructions run faster
than the corresponding groups of move and addq instructions.

There is however another refinement that can be made because the
68000 has more special instructions which allow the control part of
such loops to be written more efficiently. It is called, in its various
forms, a Test Condition — Decrement and Branch instruction and is
given the general mnemonic dbcc, where cc represents a particular
testable condition.

The instruction itself expects a data register to be used as a loop
counter together with a conditional branch type label, which
internally is stored as a relative address. For example:

dbcc dO, LOOP (cc is a testable condition eg dbeq, dbne etc)

The dbcc instruction tests both the status flags and a data register
but there are differences between loops written using dbcc and
those written with conventional conditional branching which stem
from the way that dbcc works. If the condition being tested is
satisfied then control passes to the instruction which follows the
dbcc. If the condition is not satisfied then the low word (the lower
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16 bits) of the data register is decreased by 1 and only if the result
does not equal -1 is the specified branch taken. In other cases the
instruction after the dbcc instruction will be executed.

From the above description you'll see that this instruction has two
ways of exiting. Firstly, there can be the normal loop counter based
exit. Secondly, there can be a premature exit caused by the
specified condition becoming true. The other point that is
important to understand is that the conditional part of the test
actually works in the completely opposite way to the bcc type
conditional branch instructions, because the branch is not taken if
the condition is satisfied.

For the current example we are only interested in the loop counter
part of the instruction so a dbra (which represents branch always)
instruction will be used like this:

LOOP move.b (a0)+, (a1)+ copy character and increment
pointers
dbra dO, LOOP decrease and branch on zero

Because the loop exits when dO equals -1 we need to subtract 1
from the character count originally loaded into dO. If these changes
are made we end up with this final version of a program which does
the string conversion:

* Example CH3-19.s

lea TEXT, a0 put address of string in a0

move.b (a0)+, dO copy count and increment pointer

sub.b  #1, doO reduce count by 1 for dbra

lea COPY, ail address of copy buffer in at
LOOP move.b (a0)+, (al1)+ copy character and increment

pointers

dbra do, LooP loop until dO is -1

move.b #0, (a1l) add terminal NULL

rts

TEXT dc.b 5,"APPLE"
COPY ds.b 6

The net result of running program Example CH3-19.s is that, by the
time the program finishes, the COPY buffer will hold a copy of the
original “APPLE" string in null terminated form.

This latest use of indirect addressing with automated increment
coupled with the powerful dbra loop control instruction should
begin to show something of the 68000’s power, especially as far as
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the various addressing schemes go. Example CH3-19.s, for
simplicity, has used a static string definition but it’s not too hard to
imagine writing a routine that would be able to take any string in
<count><characters> form and convert it to <characters><NULL>
form. All that needs to be done is to find some way of writing the
routine in a generally useful way and working out how the source
and destination string addresses can be passed to the routine.

One solution would be to simply specify that before the routine is
used the source and destination addresses should be in a0 and al
respectively, perhaps adding a note to this effect at the start of the
routine:

* Example CH3-20.s
; address of source string should be in a0
; address of destination string should be in ai

move.b (a0)+, doO copy count and increment
pointer

sub.b #1, do reduce count by 1 for dbra

LOOP move.b (a0)+, (a1)+ copy character and increment

pointers

dbra do, LOOP loop until dO is -1

move.b #0, (a1l) add terminal NULL

rts

This piece of code could be used whenever a string had to be
converted and the 68000, like most processors, provides a
mechanism for allowing the re-use of code in this fashion. The code
fragments themselves are even given a special name - subroutines -
and, because they are so important, they get a chapter all to
themselves.




Subroutines
and
Parameter
Passing

There are frequent cases in
programming where the same
sequence of instructions is
needed in more than one place
in a program. Instead of
duplicating those instructions
(which is wasteful of memory)
it has been found useful to
provide microprocessors with
special instructions that allow
a section of code to be re-
used. These code sections are
themselves mini-programs
written to do well-defined jobs
and, since they represent
routines which may be called
by other parts of a program,
they are called subroutines!

The 68000 provides two basic
methods for transferring
control to a subroutine. Firstly
there is a jump-to-subroutine
instruction, whose mnemonic
is jsr, and this causes an
unconditional jump to a
specified memory address.
This instruction behaves just
like the unconditional jump
(jmp) instruction, but in
addition to placing the
specified jump address into
the program counter it also
saves a return address.

By placing a return-from-
subroutine instruction (rts) at
the end of a subroutine this
address can be placed into the
program counter and the net
result is this: the processor
having jumped to, and
executed, a piece of suitably
written subroutine code, will
return to the instruction
immediately following the
original subroutine call. In
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schematic form this arrangement can be described as in Figure 4.1
below.

main code:

jsr MySub —— - MySub
1: - /

jsr MySub
2:

rts

Figure 4.1. Control flow during subroutine calls.

This subroutine call instruction sequence requires the processor to
make a note of the address of the instruction which is to be
executed once the subroutine has completed its job and this
address is conventionally called the return address. Since
subroutines may themselves call other subroutines in the course of
their work, some mechanism is needed so that these return
addresses may be stored and retrieved in an orderly fashion.

Using a Stack

The most common way of providing such a facility is to use a data
structure known as a stack which allows items to be stored on a
Last-In-First-Out basis. Some microprocessors have hardware-
defined fixed stack areas but on the 68000 processor stacks may be
implemented anywhere in memory and all that is needed is a
contiguous block, ie a block of unbroken, adjacent, memory
locations. Register a7 is used to hold the address of the top of the
stack, and we usually talk of register a7 as pointing to the top of
the stack. Prior to a new subroutine call, the stack will look like
Figure 4.2.
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}

TOP OF MEMORY

existing data

eecooee —P

current (sp) —» existing data

Designated
Stack Area

y

LOW MEMORY

'

Figure 4.2. Stack condition prior to a new subroutine call.

Before control is passed to a subroutine the processor calculates
the address of the next instruction (ie the one which would have
been executed if the subroutine call jump was not going to be
made). As mentioned above, this address is placed on the 68000’s
stack so that as the jsr instruction passes control to the subroutine
this is the state of the stack (Figure 4.3) overleaf.
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}

TOP OF MEMORY

existing data

existing data

current (sp) — 4 byte return address

LOW MEMORY

V

Figure 4.3. Stack after a new subroutine call.

68000 stacks then grow downwards in memory and since the stack
pointer always points to the last data item added to the stack this
means that before adding new items you must first decrease the
stack pointer by a number equivalent to the byte-size of the object
being stored - that way it properly points to the locations to be
used next. The jsr instruction therefore decreases the stack pointer
by four, stores the return address, and then places the specified
jump location into the processor’s program counter. Note that it is
common, when placing data items onto the stack, to talk of pushing
data onto the stack.

The main body of the subroutine will execute just like any other
piece of code but the last instruction of the subroutine will be a rts,
return-from-subroutine, instruction. This causes the address at the
top of the stack to be retrieved (popped or pulled are commonly
used terms for this operation) and placed in the 68000’s program
counter. The result is simple. The processor jumps to the newly
specified address and this of course is the return address specified
during the original subroutine call.
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A further instruction, called branch-to-subroutine (mnemonic bsr),
provides a relative addressing form of the subroutine call
mechanism. In this case either an 8 or 16 bit displacement can be
provided.

We briefly mentioned in Chapter Two that the 68000 supports the
use of separate supervisor and user stacks, which allows system
software running in supervisor mode to maintain its own stack
area. For the programs discussed in this book, whenever we talk
about the 68000 stack we are referring to the user-mode stack!

Push and Pull

There’s a point concerning the pushing and pulling of data from the
stack that is worth clarifying. When data is placed on the stack it is,
like all other 68000 data movement operations, a copy of the data
that is written into the stack area. Similarly when data is pulled
from the stack it is a copy of the stack data that is retrieved. If, by
way of example, we could see the state of the stack just after the
subroutine being discussed earlier executed its rts instruction,
Figure 4.4 illustrates what we would find.

}

TOP OF MEMORY

existing data

current (sp) —» existing data

4 byte return address

L T |

LOW MEMORY

V

Figure 4.4. Stack after the subroutine has executed a rts instruction.
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Although a copy of the return address has been placed in the
program counter and the stack pointer adjusted, the return address
originally placed on the stack is still there. What of course happens
is that the next time a subroutine call is made those locations get
over-written with the new address!

Parameter Passing

The programs and code fragments that we’ve been looking at in the
previous chapter are simple examples and not exactly typical of the
code you'll find in real programs. Most proper programs will need
to perform a variety of tasks and many of these, because they
either need to be done many times or because they concern jobs
which are common to numerous programs, will be written as
subroutines.

Apart from the fact that subroutines can save memory space there
are other benefits. A subroutine that has been written to be
generally useful will, after suitable preliminary testing, be able to
be used by programmers secure in the knowledge that it is safe, ie
the subroutine does what it is supposed to and is error free. In fact
maximising the utility value of such routines is a good design
objective because the more generally useful a piece of code is, the
more the programmer will find uses for it. Similarly, maximising
the use of either system supplied or self-written subroutines makes
program development quicker and this re-use of tested code also
reduces the chances of bugs. In fact you can almost guarantee that
any bugs that do occur in your program will come from the code
that you've written and not from the library subroutines being
used.

Most of the subroutines that you’ll code in your own programs will
use absolute or relative addressing simply because you will know
the address of the routine at assembly time. You should be aware
however that it is possible to devise extremely sophisticated
subroutine access mechanisms using other 68000 addressing
modes. | briefly mention the possibility of hash-access and table
access calls in Chapter Five and the Amiga’s multitasking Exec
Kernel uses a dynamic library system built around loadable
libraries of subroutines that are accessed indirectly. The Exec
library system is in fact so important that I've devoted a whole
chapter to it (see Chapter 10)!

You will incidentally see both the terms function and subroutine in
much Amiga literature. In fact all of the library subroutines are
called functions and this stems mainly from the fact that the C
language (upon which the Amiga and its documentation is very
dependent) calls all subroutine-like procedures, functions! In other
non-C areas of computing one normally reserves the term function
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for a subroutine that acts on some data and returns a single result.
A subroutine which takes the address of a text string and returns
its length would be called a function, a subroutine which sorted a
set of words into alphabetical order would not! Because you will
find that almost all Amiga documentation will be using the term
function you'll find that, outside of this chapter, I will be doing the
same when discussing Amiga svstem routines.

In order to be really useful, subroutines must be written so that
they are general. There is, for instance, little point in writing a
subroutine that prints the message Please enter a number! It would
however be quite useful to create a subroutine that could print any
text message specified by the main program. This brings us to one
of the most interesting areas of subroutine use. Namely, how such
information can be provided to the subroutine and how any results
might be passed back. Data items that are to be passed to a
subroutine are called parameters and the act of arranging to
transfer these parameters to the subroutine is called parameter
passing.

There are two basic ways in which data can be passed to a
subroutine:

* Parameters may be placed in the 68000’s registers.

e Parameters can be stored in memory

Register-Based Parameter Passing

This first option is both simple and fast. Since pointers to larger
objects, such as strings and other blocks of data, can be passed, ie
the subroutine can be passed the address of the object rather than
the object itself, there is little you cannot do. Similarly the
subroutine may return any results, or a pointer to those results,
directly in a register.

Memory-Based Parameter Passing

The advantage of this option, despite the fact that it is usually
slower, is that it offers more flexibility. Parameters can, for
example, if they are known at assembly time, be placed in memory
immediately after the subroutine call. For example:

jsr SomeRoutine
orig_rts dc.l #data_item1
dc.1l #data_item2
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dc.1 #data_itemN
needed_rts remaining instructions

In this case the return address placed on the stack by the processor
would be wrong - the 68000 wouldn’t realise that the numbers
immediately following the jsr call were data rather than a valid
68000 instruction. In short the return address would need to be
altered by the subroutine itself, by adding to the return address an
amount equal to the number of bytes of parameters. Other
approaches include the passing of a pointer to a parameter block in
a similar fashion. An often simpler method is to use global
variables, defined and labelled locations that can be read from any
routine anywhere in the program.

None of these solutions provide sufficient generality to have found
widespread favour but the next, stack-orientated, approach I want
to discuss has. Although the 68000 stack was introduced during the
discussions of subroutines and return addresses it is now time to
point out that the 68000’s stack can be used for the storage of
other data, namely bytes, words and long words. As usual, word
and long word, data must be word-aligned and the 68000 stack
pointer register does in fact take a special precaution to ensure this
word alignment - it word-aligns all data, even single byte values.
When byte data is pushed onto the stack it is stored in the high-
order byte of a 16 bit word.

Stack-based parameter passing can be done by several means. The
68000’s move instruction can, for example, be used in conjunction
with indirect addressing with auto decrement to push a value onto
the stack like this:

move.w tab_size,-(sp) push tab size parameter
jsr ExpandTab expand to spaces

end of program
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What must be remembered of course is that, after you have pushed
the parameter onto the stack, the jsr instruction will have
subsequently pushed a return address so the stack will be looking
something like Figure 4.5.

TOP OF MEMORY

existing data

2 byte tab size value
current (sp) — 4 byte return address

I—......_ eoevee

LOW MEMORY

V

Figure 4.5. The pushed parameter after the subroutine call has been made.

This means that the subroutine needs to look not just at the top of
the stack but actually into it in order to see the parameter. Since
the return address is four bytes long we have to use a displacement
of 4 as this example shows:

ExpandTab move.w 4(sp),d0 retrieve tab size in dO

rest of code do something
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rts

The above fragment copies into dO the two bytes of data
immediately above the return address. The situation once the
subroutine has returned is that the stack pointer will, at least in the
case of the current example, be left pointing to the parameter that
we placed on the stack. This cannot be left because it will destroy
the integrity of the stack as far as any items which have been
placed on the stack earlier are concerned. The parameter is not
needed and so there is little point in executing a move (sp)+,d0 type
pull instruction. Instead the simplest idea is to numerically adjust
the stack pointer so that the item is effectively ignored:

move.w tab_size,-(sp) push tab size parameter
jsr ExpandTab expand to spaces
addq.1l #2,sp clean-up stack

end of program

The Amiga’s amiga.lib linker library routines use this type of
mechanism and I'll be looking at some real Amiga examples of this
technique in Chapter 12.

Other stack-orientated instructions are available, including a very
useful one called push-effective-address, which can both calculate
an address using any of the 68000’s addressing schemes and push
it onto the stack for you. An example which shows the use of this
instruction is given in Chapter 12.

Register Preservation Using Movem

Normally it is advisable to create subroutines which do not alter the
contents of any temporary registers that they may use, ie those that
will not be used to return a result. The best way to do this is to
preserve those registers by pushing their contents onto the stack,
restoring them just before the subroutine returns.

One way of doing this is to push/pull the contents of each register
singly using instructions such as:
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move.l a6, -(sp) preserve a6 on stack
move.l a5, -(sp) preserve a5 on stack
move.l a4, -(sp) preserve a4 on stack
do something

move.l (sp)t+,ad restore contents of a4
move.l (sp)+,as restore contents of aS
move.l (sp)+,a6 restore contents of a6

but in actual fact a special multiple move instruction exists, called
movem, which allows this transfer to be done more efficiently when
two or more registers are involved.

Movem actually exists in two forms. The instruction used when
transferring registers to memory is called, not unsurprisingly,
Move-Multiple-Registers-To-Memory (mnemonic movem). It can use
all of the absolute and indirect addressing modes except the
autoincrement mode. This is a deliberate restriction because it
forces the programmer not to use to autoincrement when placing
data on the stack (that approach would cause stacks to grow
upwards in memory which would contradict the 68000 stack
conventions).

Its useful to look at how this instruction is designed internally. The
first word contains bit patterns which identify the instruction, the
transfer size, and the effective destination specification. The
second word is a 16-bit mask which has been assigned to represent
registers either in this fashion:

a7 a6 a5 a4 a3 a2 al a0 d7 d6 d5 d4 d3 d2d d1 dO

or, if the automatic predecrement addressing mode has been
specified, like this:

d0 d1 d2 d3 d4 d5 d6 d7 a0 a1l a2 a3 a4 a5 a6 a7

Registers are moved in the order bit 0, bit 1, bit 2 etc, of the mask
and so the order is dO, d1, d2 etc for the normal mask and a7, a6,
a5 etc, for the reversed mask (assuming that is that the appropriate
mask bits for those registers have been set to 1).

The equivalent Move-Multiple-Registers-From-Memory, movem,
instruction does not use this mask reversal. In fact it always uses
the bit mask arrangement described first, ie:

a7 a6 a5 a4 a3 a2 a1l a0 d7 dé6 d5 d4 d3 d2d d1 dO
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and instead it allows the autoincrement addressing mode but does
not allow the predecrement form.

When multiple data items are placed onto the stack the order in
which they are removed is important. Because the stack works on a
Last-In-First-Out arrangement items must be removed in the reverse
order to that used to originally put them on the stack. If for
instance you store registers dO, d1 and al (in that order) then to re-
instate the registers you must first pull al, then d1 and finally dO.
The effect of the mask reversal scheme when using the
predecrement form of the movem instruction is that this ordering
reversal occurs automatically and the program doesn’t have to
explicitly worry about it (the assembler generates the appropriate
mask).

The easiest way to describe the use of the instruction is to show
you some examples. To save on the stack the full 32 bit contents of
registers dO through d7 and a0 through a3 for example we would
write:

movem.l dO0-d7/a0-a3, -(sp)
To restore the registers (ie pull them back off the stack) we’d use:
move.l (sp)+, d0-d7/a0-a3

Similarly to preserve register dO and registers a2-a5 we use this
instruction:

move.l d0/a2-a5, -(sp)
and to restore the contents:
move.l (sp)+, d0/a2-a5

These instructions have a number of uses but as far as their use in
subroutines is concerned you'll mainly see them used on entry and
just before exiting (ie just before the rts instruction) like this:

SomeSubroutine movem.l d0-d4/a0-a3, -(sp) preserve registers
<main body of subroutine code> do something!
move.l (sp)t, d0-d4/a0-a3  restore registers
rts return

When registers are preserved like this, routines which are expecting
parameters to be passed on the stack need to allow for the fact that
more items have been pushed onto the stack after the return
address. In the above example nine 32 bit registers are preserved
(d0, d1, d2, d3, d4, a0,al, a2, and a3) so a further 36 bytes have
been placed on the stack. If we go back to the stack-based
ExpandTab parameter passing example mentioned earlier and add
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the above register preservation code, the offset now needed to
access the tab size variable would be (9 x 4) + 4, ie 40, and the code
would then be based on this type of framework:

ExpandTab movem.l d0-d4/a0-a3, -(sp)
preserve registers

move.w 40(sp),d0 retrieve tab size
in doO

rest of code do something

move.l (sp)+, dO-d4/a0-a3
restore registers

rts

Link/Unlk Instruction

More sophisticated subroutine arrangements are possible and one
scheme used by many 68000 based high-level language compilers
(including C) is not only able to eliminate the need for the altered
displacements illustrated in the previous example but provides a
number of other benefits.

The idea is that as soon as a subroutine is entered we immediately
preserve the contents of an address register on the stack and then
copy the stack pointer into it. This then establishes that register as
a fixed frame pointer which can be used to access any parameters
lying above the frame pointer and return address. Having done
that, it is then possible to decrease the real stack pointer (ie
register a7) by some chosen value such that this amount of space is
then available as temporary workspace on the stack. After this has
been done the subroutine can do all its usual register preservation
operations and data subsequently placed on the stack will be stored
after (ie below) the temporary hole that we’ve created in the stack.
If, for example, a5 was being used as the frame pointer register
we'd end up with the situation shown in Figure 4.6 overleaf.
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}

TOP OF MEMORY

existing data including

any parameters placed
on the stack prior

to the subroutine call

4 byte return address

(a5) ——————» original a5 contents
(frame pointer) *

temporary workspace area

current (sp) —» *

LOW MEMORY -

v

Figure 4.6. A more sophisticated stack-usage scheme.

The situation in Figure 4.6 is then that after the frame pointer has
been set up (a5) + 8, in other words the contents of register a5 plus
an 8 byte displacement (remember that the return address and the
frame pointer are both stored on the stack at this time), identifies
the start of the parameters (if any) that are present on the stack.
Another benefit of this arrangement is that by using negative
displacements it becomes possible to access the temporary stack
workspace, which was created when we made a hole in the stack by
decreasing the stack pointer. In a high-level language it is just these
kinds of negative displacements that are used to create local
variables, which exist only during the execution lifetime of the
routine in question.
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Best of all though is the fact that the real stack pointer is set to the
low end of our temporary workspace so, even when any number of

new items are pushed onto the stack, the frame pointer remains
valid.

}

TOP OF MEMORY

existing data including

any parameters placed
on the stack prior

to the subroutine call

4 byte return address

(a5) ——————» original a5 contents
(frame pointer) *

temporary workspace area

|
¥

new stack data
current (sp) : gets placed here

LOW MEMORY -

V

Figure 4.7. Creating a safe hole for temporary variables.

At the end of the subroutine any additional items placed on the
stack by the routine are removed and then the stack pointer is
advanced past the work area, by loading it with the contents of the
frame pointer. The original frame pointer register contents are then
pulled off the stack and placed in the register used as a frame
pointer, so re-instating it to its original value, and a normal
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subroutine rts is performed. This latter instruction, as usual,
removes the return address placed on the stack by the jsr (or bsr)
instruction.

OK, there are some difficult things to grasp with this approach but
the general outline and power of the technique should be apparent.
What you might like to know however is that the 68000 provides
two instructions which allow this complex set of operations to be
done automatically. The instructions are called link and unlink
(mnemonic is unlk) and they are used like this:

MySub 1link a5, -32 create 32 byte work area
movem.l d0-d7/a0-a2, -(sp) preserve some registers
main body of the providing it is not
subroutine will use destroyed by the sub
(a5) displacements routine itself a5
to access parameters remains valid no matter
and local workspace what happens to the

- = stack pointer

movem.l (sp)+, d0-d7/a0-a2 restore registers
unlk a5
rts

The link/unlk instructions can dynamically allocate up to 32768
bytes of stack workspace, and as you’ll see from the example the
workspace displacement size needs to be given as a negative
number, because the stack is growing downwards.

I will not be using these more advanced schemes for the examples
in this book but it is useful to know that they exist. You will, for
instance when using a debugger (such as Devpac’s MonAm) to
disassemble compiler generated code, often see link/unlk
instructions being used in this way.

Styles and Subroutines

There are characteristics of some subroutines which, although they
will not be particularly important or relevant to the assembler
newcomer, are worth briefly mentioning since the terms do crop up
| in the Amiga official documentation from time to time.

Truly relocatable routines are routines that may be placed
anywhere in memory. They are created by using relative addressing
| instructions so that absolute memory references are avoided. You
| migh . . .

ght think that, because of the way the Amiga loads its programs
and data into any convenient spare memory that is available, that
all Amiga programs would need to be relocatable. This isn't true
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because the Amiga uses a piece of program loading software called
a relocating loader which is able to take a program containing
absolute address references and modify them (ie add a loader
calculated offset) so that the program runs properly at the chosen
location.

Re-entrant routines are routines that may be interrupted, called by
the routine which did the interrupting, and still produce the right
results. This allows interrupt system code to make use of available
system routines.

Recursive subroutines are routines which are able to call
themselves during the course of their operations. Subroutines
which preserve their registers and use only those registers and the
stack for storing data will be capable of being used recursively.
Needless to say they will also be re-entrant!

Subroutines on the Amiga are very important and, as mentioned
earlier, the Amiga’s run-time and link-time function libraries
contain a great many pre-written subroutines for you to use. It is no
exaggeration to say that upwards of 80% of the assembly language
code that the average Amiga assembler programmer will write will
be library related and consist of calling pre-written functions to do
particular jobs. To a large extent your coding efforts will just
revolve around making sure that your program performs the
necessary library routines in the right order and with the right
types of integrity checks.

In many ways the use of pre-written routines can be alikened to
using a piece of hardware like a photocopier. If you use a
photocopier to make a duplicate of something you go to the
machine, place the document you wish to copy inside, press a
button, and then just wait for the device to do its job. As likely as
not you’ll do all this without knowing any real details about what
goes on inside. In a sense the copier is acting almost like a magic
black box. You know what input is required (the document to be
copied), what must be done to start the copying process, and you
know that some results will come back, ie you’'ll get a copy of the
input document.

This information hiding, black box, design concept is a very
powerful way of protecting a user from unnecessary complexity.
For the programmer, the pre-written subroutine unit provides
exactly the same type of complexity hiding capabilities and, on the
Amiga at least, constitute essential program building blocks to be
used in the same way as the electrical engineer might use IC chips
(integrated circuits pre-designed to do a particular job) to build an
electronic circuit.
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There is one general point about this pathway which is important.
Although the user of the function doesn’t need to know how the
subroutine works, they do need to know what it does, what
information must be supplied, and the significance of the results
produced. this means that the user must have suitable
documentation for the system routines. This of course is one of the
reasons that books such as the RKM Includes & Autodocs manual,
which lists function usage descriptions for all of the Amiga’s library
functions, are so important.




Program
Design
Issues

This book is not about
program design but there is
no doubt that programming a
machine as complex as the
Amiga is almost impossible
unless you adopt some kind of
forward planning. That for
most people means taking
more than a passing interest
in the techniques used for
program design. I'm not going
to review the many tools
which are available but I am
going to provide some
examples of a method that |
have found to be of immense
value with all kinds of
programming, including
68000 assembler.

It’s based on a logic design
tool called the Warnier
diagram and, before looking in
detail at the ideas involved, |
want to make the following
point. The methods I am about
to discuss aim to obtain
solutions to problems that are
completely independent of
both the computers and the
languages which might
eventually be wused to
implement the chosen design.
These latter factors may well
affect the final coding stages,
but they should not usually
influence the overall layout of
the design.

So, what is a Warnier diagram?
Essentially it is a set of curly
brackets, that define both
particular groups of
operations and the order in
which they should be
performed. The easiest way to
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show you about these diagrams is to take some examples and I'll
start by taking one which will let me explain some important
diagram conventions.

Imagine we wish to produce a report, consisting of details held on a
computer file on disk. The Warnier diagram of the basic problem is
shown in Figure 5.1.

/  BEGIN REPORT
(1 time)

ACCESS FILE
(1 time)

REPORT ¢

PRINT DETAILS ON FILE
(1 time)

END REPORT
ke (1 time)

Figure 5.1. Essential characteristics of the simple report generator.

The bracket is read from top to bottom and describes a procedure
or group of operations that has, arbitrarily, been called REPORT.
The numbers which you see written underneath the various
statements identify how many times the item is to be performed
and, with just those two conventions, our first diagram is already
illustrating some of the essential features of the problem.

Do we know anything more about the problem? Can we think of any
information that could be relevant? Well, we know that computer
files need to be opened before reading and closed once the read
operation is complete. These details could therefore also be added
to the diagram. To enable us to explain some further conventions
used with Warnier diagrams let us first add a minor complication to
the problem. Let us suppose that the user wishes to access a file of
his (or her) own choosing and to obtain a printed report of the
details on the file. The specified file may not exist, and, if this is
the case, the user should be informed. These changed or altered
requirements can be represented by a more detailed Warnier
diagram.
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( BEGIN REPORT
(1 time)
ASK FOR FILENAME ,
(1 time) OPEN FILE
(1 time)
ACCESS FILE
FILE EXISTS (1 time)
(0,1 time) < PRINT DETAILS
(1 time)
< CLOSE FILE
(:) (1 time)
N\

FILE EXISTS INFORM OPERATOR THAT
. FILE DOES NOT EXIST
(0,1 time)
(1 time)
END REPORT
(1 time)

Figure 5.2. Some new restrictions added to Figure 5.1.

Figure 5.2 shows, in Warnier diagram form, the requirements of the
problem as it is at the moment. We are using the convention that
the logical opposite of a statement is written by placing a bar over
it.

FILE EXISTS means FILE DOES NOT EXIST

We are also using a ®sign to separate mutually exclusive operations
(sets of operations which will not occur together). In the present
example the file will either exist or it will not exist, so only one of
these two operations would be performed at any one time and (0,1
time) is written underneath the statements involved. At other times
the operations shown within a bracket may need to be repeated and
in these cases an expression such as (1,N times) would be used.
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The conventions used so far are in fact the only ones you will need
for the majority of problems that you are likely to encounter. Here
they are collected together for convenience:

e Brackets are used to define sets of operations.

e Brackets are read, and performed, downwards within any one
level. The item at the top of the bracket is performed first, the
item at the bottom performed last.

e The logical opposite of a statement can be written as the original
statement with a bar drawn over it.

e Brackets written to the right of a statement indicate the
operations to be performed if that statement is performed.

e Underneath each item or statement we indicate the number of
times the operations should be performed.

e Mutually exclusive statements are written separated by a @ sign.

Using these conventions we can express in English exactly what
Figure 5.2 tells us: we are dealing with a certain procedure, called
REPORT that starts by asking for the name of a file. If the file exists
then it is opened, accessed, the details printed, and then the file is
closed. If it does not exist then the operator is informed of the fact.
Remember that if the file does exist then it is the group of actions
(subset) shown to the right of the label FILE EXISTS that are
performed.

To appreciate the elegance and speed with which these diagrams
can accommodate changing requirements let us place some further
restrictions on this problem. Within this hypothetical computer
system are files containing sensitive data, perhaps personnel data,
wages or medical records. Such data must be protected from
unauthorised access and users are therefore issued with access
code numbers, so that examination of sensitive files is restricted to
those users with the proper authority. If unauthorised attempts to
access this data are made the computer should record the fact,
perhaps by making an entry into a special security file.

Let us first consider the new constraints in isolation. We need to
check whether the file specified by the user is a restricted file, if it
is we must ask for the user’s code number. If the code is correct
then we allow access, if not we write a security record indicating an
attempted illegal access.




REPORT %

/
BEGIN REPORT
(1 time)
ASK FOR FILENAME [~ é
(1 time) BEGIN FILE EXISTS ASK FOR CODE
R 2 L) (1 time) ACCESS FILE
(0,1 time)
FILE RESTRICTED < CODE CORRECT PRINT DETAILS
(0,1 time) (0,1 time) (1 time)
FILE EXISTS < CODE CORRECT WRITE SECURITY RECORD
(0,1 time) C) (0,1 time) ILLEGAL ACCESS ATTEMPT
N (1 time)
ACCESS FILE
FILE RESTRICTED .
. (1 time)
C> (0,1 time)
PRINT DETAILS
END FILE EXISTS .
. (1 time)
\ (1 time) v
FILE EXISTS INFORM OPERATOR THAT S
(0,1 time) FILE DOES NOT EXIST 8
(1 time) 3
END REPORT o]
L (1 time) g.
g
=
&
Figure 5.3. A hierarchy is forming within the revised problem. :
8
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The diagram in Figure 5.3 shows the Warnier form of our new
requirements. Notice that as we redefine the problem and add more
detailed restrictions it is not necessary to rearrange the complete
diagram, as one frequently needs to with flowcharts etc. All we
have to do is superimpose the new details and restrictions on to the
existing diagram structure. The diagram is therefore actually
growing as we successively modify and redefine the known details
of the problem. You'll see later that the Warnier diagram is not only
documenting and expressing the logical requirements of the
problem but it is doing so in a way that will make the transition to a
computer language equivalent form remarkably simple.

The ability of the Warnier diagram to display, help formulate, and
to grow with the changing logical requirements of a problem, as
that problem is examined, is of great importance. Once the quite
simple conventions have been learnt these diagrams can be read
just like the written English equivalent but, unlike the written
English form, a Warnier diagram contains within its deceptively
simple notation, the complete solution to the coding of the
problem.

The secret of converting a Warnier diagram into a finished program
lies in regarding each bracket involving more than one operation as
a subroutine. There are certain exceptions to this general statement
but the pseudo-BASIC sketch shown in Figure 5.4. should give you
the general idea.

A Second Example

For this second example, which again is a general, rather than an
Amiga specific illustration, I'm going to design the basic structure
of a routine that collects characters from a keyboard device. If the
character is a carriage return (ie ASCII 13) then the routine should
terminate, if it is another control character then an appropriate
control character subroutine should be performed. If the character
is not a control character then it should be passed to a printing
routine to display it on a VDU or other output device.

Let's first quantify what’s known about the problem in terms of the
sort of operations which might be needed. We will have to input a
character, possibly using an input routine available within the
operating system. Some type of check will also need to be made to
see whether an input character corresponds to a control character
or not. For the purposes of the example we’ll regard a control
character as one with an ASCII value of less than decimal 32.
Additionally some means of printing characters is needed but since
such facilities are usually provided by the operating system we’ll
assume that such a routine is already available.

The first step is to create a Warnier diagram sketch showing those
objectives which are relatively obvious from the original statement
of the problem.
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INPUT NAME OF FILE

IF FILE EXISTS THEN GOSUB "FILE EXISTS' ELSE PRINT 'FILE
DOES NOT EXIST'

RETURN TO CALLING PROGRAM

REM SUBROUTINE.......... FILE EXISTS

IF FILE IS RESTRICTED THE GOSUB 'RESTRICTED FILE' ELSE
GOSUB "ACCESS'

RETURN

REM SUBROUTINE.......... RESTRICTED FILE
INPUT SECURITY CODE

IF SECURITY CODE=CORRECT CODE THEN GOSUB 'ACCESS' ELSE
GOSUB "ILLEGAL ACCESS'

RETURN

REM SUBROUTINE.......... ILLEGAL ACCESS

WRITE TO I/A LOG FILE THE TIME OF ATTEMPT AND THE ACCESS
CODE

PRINT "THIS IS A RESTRICTED FILE - PLEASE MAKE NO FUR-
THER ATTEMPTS'

RETURN

REM SUBROUTINE.......... ACCESS

THIS WOULD BE A ROUTINE TO ACCESS THE DATA IN THE FILE
AND DISPLAY

ON TERMINAL OR PRINTER ETC.
RETURN

Figure 5.4. Pseudo-BASIC code for the first example.
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SYSTEM PRINT
CHARACTER
ROUTINE

<[ CONTROL ROUTINE

,1 time)
©,

CONTROL CHARACTER

AVAILABLE SYSTEM ROUTINE
(0,1 time)

CONTROL CHARACTER

SKIP AND EXIT

{
!

CARRIAGE RETURN
(0,1 time)
CARRIAGE RETURN
(0,1 time)

BEGIN

(1 time)

GET CHARACTER
(1 time)

END

(1 time)

EXAMPLE B ﬁ

Figure 5.5. First Warnier diagram for the second example.

Figure 5.5 shows a first attempt at describing the problem. The
diagram implies that a test can be performed which will indicate
whether a given input character is a carriage return or not.
Additionally it implies that a character can be tested to see if itis a
control character. We should be fairly happy with this initial
diagram because all general computer languages, both high and low
level, provide the type of testing needed to perform the necessary
tests.
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At present the Warnier diagram does not indicate that we collect
anything more than one character by performing the illustrated
operations. It is necessary in practice to perform the operations in
Figure 5.5 any number of times from 1 to N times, depending on
when the user supplies a carriage return character.

SYSTEM PRINT
CHARACTER ROUTINE

{CONTROL ROUTINE

CONTROL CHARACTER
CONTROL CHARACTER

AVAILABLE SYSTEM
(0,1 time)

ROUTINE

{SKIP AND EXIT
{(0,1 time)

z =z
©< [« 3
o = =2
w - -
[ w w
(&) 0@ ~ @ ~
< ] [
e~ o ~ w e w E P
[ < QO S A S A %]
E X E < + < E
Z ' O - - -~
- + @ r [« 3 o +
(L) - x - x - =]
w v w v~ g O < © Z -
N 7/
V
—_
[ ]
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- E
[« )
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n
-4
- =
w v
O ~
\ /
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Figure 5.6. Expanded Warnier diagram for the second example.
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Figure 5.6 explicitly shows that we perform the operations
indicated in Figure 5.5 at least once, and up to a maximum of N
times. The labels used are, of course, arbitrary, but it is obviously
advisable to choose meaningful English expressions since this
enables the diagrams to be more easily understood.

Now that a reasonably accurate representation of the problem is
available it’s time to consider some more detailed requirements: Let
us suppose that the control characters detected are going to be
used to perform the operations shown in Figure 5.7.

ASCII code Operation to be performed

8 Move cursor to Left

16 Move cursor to Right

10 Perform a Line Feed

9 Perform a Tab

11 Move cursor Down

12 Move cursor Up

Others Take no action (ie ignore them all)

Figure 5.7. Actions associated with the control characters.

These operations are a more complex example of the mutually
exclusive operation sets mentioned earlier. Notice that in this case
the bar notation cannot be used because many alternatives exist.
Instead the options are written using their respective names
(separated of course by the @ sign to indicate that each operation
subset is mutually exclusive). Figure 5.8 shows how this situation is
represented in Warnier diagram form.
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i ASCII CODE = 8 { Move cursor to Left
@
ASCII CODE = 16 < Move cursor to Right
@
ASCII CoDE = 10 < Perform a Line Feed
CONTROL ©
CHARACTER < ASCII CODE = 9 < Perform a Tab
(0,1 time) ©
ASCII CODE = 11 < Move cursor Down
@
ascII cobe = 12 < Move cursor Up
@
S ASCII CODE = OTHERS ( Take no action - ignore

Figure 5.8. Warnier expansion of the CONTROL CHARACTER statement.

Let us now make an alteration to the control character routine by
creating some further assumptions. We suppose that if our
hypothetical user presses a control key that serves no apparent
purpose then either a simple error has been made (the user has
pressed the wrong key) or the user is under the impression that the
control key pressed serves some function which it does not, in fact,
perform. In either case we may, from a practical point of view,
decide to provide some means of informing our user that a useless
or unsupported key has been pressed.

I'll assume, since this is a general example, that the VDU screen has
either one or two lines available for comments or for collecting
responses such as input from the user, or that some type of
requester/dialogue boxes are available for these types of simple 1/0
operations. The implication here then is that most of the screen
contains information that must be preserved, so we cannot simply
print a menu of control character options on to the screen.

Nowadays of course on machines like the Amiga it is the WIMP
(Window, Icon, Mouse, Pull-down menu) system that would handle
the screen preservation actions, but for the purposes of this
example let’s assume that it is the applications program itself that
must take all necessary actions.
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As far as the example is concerned then we will need both space on
the screen to display a menu, and somewhere to save the existing
contents of the VDU screen. It might also be useful to ascertain
whether the user actually needs a menu. Perhaps he or she will
often quickly realise that a wrong key has been pressed by mistake
and just want some way of getting back to normal operations as
quickly as possible.

To tackle this new set of problems it is useful to first consider the
new restrictions as a discrete subset of operations, ie concentrate
on just the new requirements. Once a suitably structured diagram
concerning the new constraints has been created it can then be
superimposed onto the original diagram in Figure 5.8.
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OTHER
ASCII
CODES

Figure 5.9. New restraints added to Figure 5.8.
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I could continue to expand other statements to provide further
detailed analysis of the problem. As we do so we reach a point
where it is possible to say: Yes, the operations we are describing in
the lower levels of the diagrams (the right-most levels) are easily
capable of being coded directly in the language | have chosen to use!
In practice we reach this point far sooner with high-level languages
than with assembly languages because more complex operations
are supported.

The relevant point to make is that the general principles are the
same. The only difference is that when you analyse problems that
will be coded in assembly language you will need to carry the
analysis further.

In the illustrations given the Warnier diagram was used basically as
a tool for expressing, and documenting, ideas and thoughts. The
finished design was therefore achieved by a process of iterative
refinement. There is nothing fundamentally wrong with this
approach, even though in practice ideas are likely to change during
the time that the initial Warnier diagram sketches are prepared.
Very often it is the fact that you can represent your ideas in a
pictorial fashion that will help you discover anomalies, fauits etc. It
is however possible to create Warnier diagrams directly using
various logic devices such as truth tables, Karnaugh maps etc, and
to check that a diagram is correct mathematically. This book is
obviously not, however, the place for such discussions.

The 68000 Connection

You will doubtless have realised that in creating a Warnier diagram
we are to a large extent planning the program control structure of
the piece of software being designed. Consequently conversion to
68000 code revolves essentially around program control structure
issues and there are a few points which are worth making about the
68000’s instruction set and the various instructions which can be
used for creating the necessary control units.

Branches and Jumps

The 68000 as you know has two basic goto-like ways of transferring
control. The jmp instruction which uses a full sized address, and
the bra instruction which uses relative addressing based on a 16 bit
displacement. In addition to this there are conditional branch
instructions, which take the general form bcc and dbcc, that are
able to perform relative branching when specified conditions are
met or not met (branch on zero, branch on plus and so on).

The 68000 also supports two basic subroutine type instructions:
The branch to subroutine bsr instruction is the relative addressing
form of bra which additionally places a return address on the stack
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allowing a terminal rts instruction to transfer control back to the
instruction immediately after the one that caused the subroutine
branch in the first place. The second subroutine instruction of
interest is the jump to subroutine jsr form which, like jmp, uses a
full sized address rather than a displacement. jsr works like a jmp
instruction but like bsr it places a return address on the stack.

In the context of usage flexibility there is a very important
difference between the relative branching bra type instructions and
full address orientated jmp and jsr forms. The latter instructions
have much more scope in terms of available addressing modes. In
fact there are seven addressing forms listed as being available for
the jmp and jsr instructions:

Register Indirect

Register Indirect with Displacement

Register Indirect with Index

Absolute Short

Absolute Long

PC Relative with Displacement

PC Relative with Index

The indirect addressing modes are particularly useful for creating
some of the more complex control structures. The instruction:

jsr (ab5)

for instance, performs a subroutine call to a location whose address
has been placed in address register a5. The 68000 also has a load
effective address lea instruction which can compute and load an
address register with an address computed using any of the
68000’s addressing modes. This means that even with the simple
indirect subroutine call the processor can be instructed to perform
an infinite number of complex subroutine call arrangements. The
first instruction of the following fragment, for example, takes an
address held in register a2, adds it to the value held in register d4,
and then adds a program-specified fixed offset (12 hex in the
example) to produce an operand address which is then loaded into
register a5. The second instruction performs a subroutine jump to
that calculated address:

lea $12(a2, d4.1) as
jsr (ab5)

Not only does this mean that we've got very flexible conventional
run-time (dynamic) and static address calculation facilities but also
that things like key-to-address transformation (hash based)
schemes are also relatively easily built:
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jsr CalculateAddress calculate hash address in dO
move.l d0,a5 copy to a5
jsr (ab) call appropriate subroutine

The net result of all this is simple: the 68000 itself is not likely to
place any restrictions on what you can do control-wise because all
manner of clever schemes can be devised. In fact once you start
working at the processor level you begin to realise that the
addressing modes of the 68000, coupled to its relatively
symmetrical instruction set, actually tends to liberate, rather then
restrict the programmer. At times | sometimes wonder whether it
isn’t the high-level languages which suffer from shortcomings
rather than the low-level ones although I'm sure most people would
disagree.

The point again needs to be made that one of the reasons that | feel
just as comfortable working with assembly languages as with high-
level languages is that before | write one line of assembler code I'll
have a logical plan available which shows what must be done!

Black Boxes

I've made quite a point elsewhere of talking about information
hiding and black box units, subprogram/subroutine units. The
ability to create isolated pieces of code which can be used without
knowing how they operate makes for re-useable and easily
modifiable code units. Inherent in such ideas of modular program
construction come two other needs: decent parameter passing
schemes as opposed to routines which use a hotchpotch of globally
accessible memory locations, and the ability of a routine to create
and use variables which are known only to them. Languages like C
provide inbuilt mechanisms for parameter passing and use of local
variables, but how can we do it from assembler?

There are a number of schemes but one, stack-based allocation,
stands out as being particularly important. The idea is simple. As a
subroutine is entered the stack pointer register is altered so that
some temporary working space is preserved on the stack for the
variables and other quantities needed by the routine, conveniently
accessed by setting up a frame pointer which allows the workspace
to be accessed indirectly. The 68000 has a powerful instruction pair
called link/unlk which allows this whole process to be automated.

Another important technique, which we've already discussed, is
that of preserving and re-instating processor registers during
subroutine calls. At the start of the routine you preserve, by
pushing onto the stack, those registers which are going to be
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utilised during the subroutine call. Just before the routine
terminates the pushed values are pulled off the stack and used to
return the processor to its original state.

For now though, with the above preliminaries out of the way, it’s
time to look at some of the basic ways in which the sequence,
repetition and alternation building blocks can be tackled with
68000 assembler.

Control Constructs - Sequence

As you might expect, sequence is the easy one. Sequence is implied
simply by virtue of the order in which statements are written. If, for
example, you need to code something like this:

INITIALIZE REPLY STRING
COLLECT USER REPLY
INTERPRET USER REPLY

then, if all the operations were going to be handled as
subroutines,you might write something along the lines of:

jsr InitializeReplyString
jsr CollectResponse
jsr InterpretReply

of course if one or more of the operations were simply enough, ie
consisted of just a few relatively obvious instructions, then they
might be coded in line.

Suppose that the above routine was using a0 as a reply string
pointer and that the strings were using the NULL terminator
convention. To initialize a string in such a situation all that needs
to be done is to set the first byte (which would be the byte
represented by the address held in a0) to NULL, so the above
example would just as likely be coded as:

move.b #NULL, (a0) initialize reply string to ""
jsr CollectResponse
jsr InterpretResponse

Similarly if you were using some system routine to collect a user
string and this routine needed to have the start of the string
supplied in dO you might have a fragment like this:
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INITIALIZE REPLY STRING

SET UP dO TO HOLD START OF REPLY STRING
COLLECT USER REPLY WITH SYSTEM CALL
INTERPET USER REPLY

In such a case it’'s not hard to see the sort of translation that would
be needed:

move.b  #NULL, (a0) initialize reply string to ""

move.l a0, dO system requires start address in dO
jsr CollectResponse
jsr InterpretResponse

Control Constructs - Repetition
Consider the following fragment:

GET CHARACTER
(1, n times)

Repetitive sets, when coded, end up as loops. If we choose register
d0 as a loop variable then the obvious way of coding the above
fragment would be along the lines of:

move.b #LOOPCOUNT, dO
Loop jsr GetCharacter

subq.b #1,d0

bne Loop

Of course the 68000 has an automated loop instruction dbcc which
handles both the counter modification and, if needed, an extra
conditional exit test. Bearing in mind that dbcc quits the loop when
the counter register hits -1 (so the count must start at one less than
the required value) we'd probably write the above loop like this:

Loop move.b #LOOPCOUNT-1,dO
jsr GetCharacter
dbra do,Loop

If the extent of the repetition is not known in advance, as in the
now well-worn case of collecting keyboard characters until such
time as a return key is detected, then we modify the test conditions
accordingly. Supposing that in the above example the GetCharacter
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routine, as well as placing the collected character into a string
buffer, also returned the character in question in register d0. The
code fragment would then need to be something along the lines of:

Loop jsr GetCharacter
cmp.b #CR,dO
bne Loop

At times you might wish to show the exit conditions explicitly on
your Warnier diagrams. The fragment for the above example might
therefore have been written as:

4
GET CHARACTER

CHARACTER=CR

COLLECTION (0, 1 times) { exit from collection loop
LooOP
(1, n times) @

CHARACTER=CR

(0,1 times) < do nothing, ie keep going
\

It is not worth being pedantic over the form, or the notation, for
such translations. If a repetitive loop requires an exit condition
which is obvious to code then there is little point in cluttering up
the Warnier diagram with unnecessary detail. Having said that there
is, for documentation purposes at least, a case for including some
note about any tests which are implied rather than explicitly
diagrammed. Bracketed comments do nicely here:

/
(Collect these characters until a CR is
encountered)

GET CHARACTER
(1,n times)

The bottom line then is simple: you take your diagram detail to the
point where the actions being specified become easy to code.
Obviously the point where this occurs will vary according to your
programming abilities and the problem being dealt with!

The above loops are post-test forms - the exit condition occurs at
the end of the loop. Pre-test repetition, ie repetition of the
while/wend variety, is just as easy to create. Take the following
diagram fragment:
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CONVERT TO LOWER CASE
(0,n times)

if we assume that a0 holds the address of the first byte of the string
being dealt with, we might code the above fragment like this:

cmp.b #NULL, (a0) is first byte a NULL?
beq Here
jsr ConvertToLowerCase

Here

The implication here is that if the string is empty, ie contains only a
terminal NULL character, then the ConvertToLowerCase routine is
never executed. It's interesting to note, but I'm not going to dwell
on this, that the assembly language form actually shows the
fundamental nature of the repetitive set which occurs one or more
times. The above code actually represents this situation:

/—
CHAR = NULL ¢ CONVERT TO LOWER CASE
(0,1 times)

@

CHAR = NULL
\(0,1 times)

MODIFY STRING ¢
(1,n times)

Control Constructs - Simple Alternation

To be honest we've already started looking at alternation in the
sense of loop termination testing. The if-else type testing needed
for fragments like:

/

CHECK PRINTER (this routine will return zero flag

set if printer is properly connected)

< PRINTER CONNECTED < print file

®

PRINTER CONNECTED ( tell user printer is not connected
\

can be coded using these type of schemes:
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jsr  CheckPrinter z flag indicates connection

beq Print
jsr PrinterMessage
bra Here

Print JSR PrintFile

Here

Control Constructs - Case Alternation

It is possible to extend the above simple alternation schemes to
cater for case alternation. This leads to a step by step evaluation of

each case. For example:

' LINEFEED
&)
CARRIAGE RETURN
&)
< TAB
@
BACKSPACE
<)
. OTHER CHARACTERS
could be coded using this type of framework:
LinefeedTest cmp.b #LINEFEED,dO
bne CarriageReturnTest
do line feed related stuff
bra CaseEnd
CarriageReturnTest cmp.b #CARRIAGE_RETURN, dO
bne TabTest
do carriage return related stuff
bra CaseEnd
TabTest cmp.b #TAB, dO
bne BackspaceTest
do tab related stuff
bra CaseEnd
BackspaceTest cmp.b #BACKSPACE, dO

bne OtherCharactersTest
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do backspace related stuff

bra CaseEnd
OtherCharactersTest ignore or do whatever else is necessary
CaseEnd...

Whether the individual actions associated with each case get
written as subroutines calls, instead of being written in line,
depends to a large extent on what is involved. If you are happy that
the necessary code details are easily handled then by all means
place them in line. Here’'s an example. Suppose that the fragment
we've just discussed had to expand tab characters to spaces. The
relevant details might have been diagrammed as:

/(ao is the pointer to the buffer holding these input characters)

LINEFEED <

®

CARRIAGE RETURN <

/
(expand tab character to spaces)

® (variable g_tab_count holds value one less than
the equivalent spaces number)
< ThB < INSERT SPACE insert space in current location
® (1, n times) | increment string pointer
\
BACKSPACE <
®

OTHER CHARACTERS <
\

The general type of loop for such space insertion would therefore
go something like this:

move.b g tab_count,d1 get conversion count

InsertSpace move.b  #SPACE, (a0) insert space
addq.l  #1,a1 move to next character
subq.b  #1,d1 decrease count
bne InsertSpace

Using post-increment addressing and the specialised dbcc
instruction, the above loop can be written more concisely as:



move.b
InsertSpace move.b

dbra

There would be no problem in coding those three lines directly.
Most assembly language programmers would be able to fill that TAB
segment so that the skeleton code framework then looked

something like this:

LinefeedTest

CarriageReturnTest

TabTest

InsertSpace

BackSpaceTest

OtherCharactersTest
CaseEnd...

The key, as always, is to only code those aspects which to you seem
crystal clear. If you're having trouble figuring out what sort of code
should be written for a particular piece of diagram then the chances
are that you've not taken the diagram to a sufficient level of detail.
The solution is simple - expand your diagrams until they do
represent that required detail.
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g_tab_count,d1 get conversion count
#SPACE, (a0)+ insert space/increment a0

d1,InsertSpace

cmp.b #LINEFEED, dO

bne CarriageReturnTest
do line feed related stuff
bra CaseEnd

cmp.b #CARRIAGE_RETURN,dO
bne TabTest

do carriage return related stuff
bra CaseEnd

cmp.b #TAB, dO

bne BackspaceTest
move.b g_tab_count,d1

get conversion count

move.b #SPACE, (a0)+
insert space/increment a0

dbra d1,InsertSpace

bra CaseEnd

cmp.b #BACKSPACE, dO

bne OtherCharactersTest

do backspace related stuff
bra CaseEnd
ignore or do whatever else is necessary

107
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Alternative Schemes for Case Construction

It must be said that, although the above approach has the
advantage of being simple, there are occasions when it is
inappropriate. One example which springs to mind is where a very
large number of individual cases need to be catered for - if, for
instance, you have a hundred different cases the above
arrangement would lead (on average) to each character being tested
fifty times. If you need fast case testing then the above approach is
not going to help and alternative schemes need to be found. Here
much depends on the particular application but if the values of the
case structure entries are close together an indirection table, which
provides the addresses of all of the case entries, can be used. You
could, for instance, set up a table of routines like this:

INDIRECTION_TABLE: dc.1 Sub1, Sub2, Sub3, Sub4, Subs,
dc.1l Sub6, Sub7, Sub8...

Sub1: some relevant code
rts

Sub2: some relevant code
rts

Sub3: some relevant code
rts

Sub4: some relevant code
rts

Sub5: some relevant code
rts

Sub6: some relevant code
rts

Sub7: some relevant code
rts

Sub8: some relevant code
rts

etc...

It’'s then possible to index the appropriate address locations and
use an indirect subroutine call to select the appropriate piece of
code:

move.l #INDIRECTION_TABLE, a5 base address

(assume that the case data is in dO so dO times 4 will
be the required table offset)
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asl.w #2,d0 multiply by 4
move.l (a5,d0.1), a0
jsr (a0)

If it were necessary to transfer control to some place other than the
place after the subroutine call you could modify the above scheme
by pushing your own return address onto the stack and then follow
this with the equivalent jump instruction:

move.l #INDIRECTION_TABLE,aS base address

(again assume that the case data is in dO0)

asl.w #2,d0 multiply by 4
move.l #EndCase,-(a7) push return address
move.l (a5,d0.1),a0

jmp (a0)

(some other code or data, perhaps the indirection table
itself, that shouldn't be executed)

EndCase... continue execution at this point.

Design Summary

The overall diagram<->code conversion strategy should now be
pretty clear. Having described the structure of the program using a
Warnier diagram (or set of such diagrams) the conversion proceeds
primarily by coding the various bracket levels as subroutines, only
adding suitably detailed in-line instructions when the operations
being dealt with are straightforward.

The reason why this approach is so effective is simple: It's because
most (if not all) of the design issues, as far as program structure is
concerned, will have been dealt with before any coding is done.
Consequently you'll never at this stage have to ask questions like
“whereabouts in the overall program should this piece of code be
placed?”, or “what happens if this routine receives a character other
than the ones it expects to receive?".

| mentioned earlier that, as far as this type of diagram use is
concerned the design process is iterative. This begs the question:
when do you know that a diagram is finished? The answer is that
you know that a diagram is finished when you look at the lower, ie
most detailed, diagram levels and think: “Hey, this isn’t so bad. All
those things look easy to code!".

| certainly do not get such translations right every time, neither
does anyone else, and incidentally neither will you, no matter what
design techniques you choose to adopt. Fortunately you'll know
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when you haven’t provided a sufficiently detailed plan - all of a
sudden you'll hit coding difficulties because you are not quite sure
of what you are doing. That of course is the time to stop coding, go
back to your design diagrams, and think, preferably in a language-
independent way, about what you are trying to do.

I will not be emphasising the pre-code design issues elsewhere in
this book and certainly am not going to force you to adopt the use
of Warnier diagrams. What | do want to drive home though is this:
these pre-coding design issues, as any professional programmer
will tell you, really are very important. Some knowledge and
experience of either Warnier diagrams or some equivalent
technique will make your life as a 68000 coder considerably easier!



Program
Documentation

Over the years much has been
written about the quality of
program documentation and
in the professional, large-
project, arena there are many
easily-enforceable guidelines
for both user and system
documentation. With smaller
programs it is usually
convenient to adopt a more
flexible framework and so I'll
restrict my remarks to
program comments which
occur within the source code.

In-line comments, that is
comments placed within the
source code itself, should be a
valuable documentation aid.
Having said that, it is
unfortunately not uncommon
to find examples of program
comments which are at best
inadequate and at worst even
misleading

Such documentation failings
can be serious for several
reasons. Firstly, for better or
worse, in-line program
remarks tend to be long-lived.
By their very nature they
remain embedded within the
code for the duration of its
lifetime. Sometimes, even at a
professional level, in-line
comments may be the only
form of program documenta-
tion available and if the
comments are out-of-date,
uninformative, or perhaps
downright misleading then the
maintenance of the program is
likely to prove more difficult
than if the program had been
left uncommented.
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In-line commenting problems fall into a number of recognisable
classes:

e Relatively pointless additions which essentially duplicate
information that is obvious from looking at the code itself.

e Comments which are misleading or incorrect.

e Situations where so many comments are present that the
important ones become hidden amongst a mass of trivial
remarks.

e Situations where an insufficient number of comments have been
included.

e Situations whereby comments have become dangerous by virtue
of the fact that they are out-of-date.

Pointless additions are surprisingly common. A programmer may
add a comment which simply duplicates something that is perfectly
obvious from the code itself. For example:

move.l #0, count set count to zero!

These types of additions arise for a number of reasons.
Occasionally the less experienced programmer may include such a
remark to remind themselves what they are doing. It's an
understandable trait but more experienced programmers reading
the code will find such comments of no value whatsoever. There
are however occasions where it might be necessary to draw
attention to the fact that such an initialisation is important. This
example for instance tells the programmer reading the code
something very important about the variable in question:

move.l #0, count ;don't forget that this count
y;variable must be set to zero each
;time this routine is entered!

You will of course find a lot of comments in this book which, once
you have some 68000 coding experience under your belt, will be
recognised as stating the obvious. Such comments have of course
been added to ease your passage through the code in the early
days!

Comments which are misleading or incorrect can also be
particularly troublesome. Programmers examining your program
code will invariably accept in-line comments without question and
this assumption, that any comments present correctly reflect the
actions of the source code, is known to lead to the programmer
suffering psychological blind spots. The results? Programmers may
fail to recognise errors that might otherwise have been patently
obvious.
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Over-commenting is perhaps less of a danger but it is worth bearing
in mind that rather more sparing use of comments in general might
enable you to effectively highlight any difficult areas by providing
additional comments in those areas needing special attention. This
potential benefit is lost if such areas are buried deep within large
numbers of less important comments.

A total lack of comments isn’t a danger, but it's a nuisance because
you have to work harder to understand what the program is doing
if you wish to change something. There are a number of reasons
why a programmer might not bother to comment a program.
Perhaps the program was originally written for a once-only use,
perhaps the programmer thought that the code was self-
explanatory. Many programmers do not bother to change comments
when they make program modifications. The result, another
danger, is that program code and in-line documentation diverge.

Don’t make the mistake of thinking that comments are just to help
other users and that you understand your code well enough not to
need additional remarks. That may be so when you write the
program, but you'll be in for a surprise when you regularly start
looking back at code you wrote several years ago - it’s amazing how
code tricks which seemed perfectly obvious at the time seem to
loose their inherent obviousness with the passage of time. The
solution? Make sure that you provide decent in-line documentation
and, most importantly, get the appropriate notes into the source
code whilst you are creating the program - don’t wait until after the
program is complete!

Several options exist for improving the quality of source code
documentation. Comments should be structured in the same way as
the program code itself. Remarks placed within a routine should be
such that they apply only to the routine in question, not to the
application which it is part of. This ensures that when a routine is
re-used in another application, extraneous comments relating to a
previous application are not inadvertently included.

Adopting a clean, structured, approach to program design helps to
ease potential maintenance and commenting problems. Modules
and routines should be created which communicate via well-
defined interfaces so that the details of a particular routine can be
hidden within that routine. Modules should be given comment
headers which explain their purpose. At lower levels subroutines
and functions should also contain details which provide an
overview of the routines themselves, explain any conventions in
use, identify the parameters expected, and indicate the way in
which results are returned.
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Self Commenting Languages

In-line commenting, whilst important, should still be considered
essentially as an addition to, and not a replacement for, any self-
documenting facilities of the language itself. Self-documenting
facilities? Yes, nowadays almost all languages allow useful
conventions to be adopted which can help to make the source code
more intelligible and 68000 assembler is no exception.

Use understandable names for variables and symbolic constants.
Adopt conventions such as prefixing global variables with the
character g_ and suffixing pointer variables using _p, so that the
type of variable can be implied from its name:

move.l #FALSE, g_exit_flag ;clear exit flag - user
has decided not to quit

is a much preferred alternative to code which reads like this:

move.l #0, ef ;clear global exit flag
;- user has decided not
yto quit

Don’t get carried away with such conventions. You are after all
aiming to produce guidelines which can help, not build rigid
restrictions which will hinder. For the most part all that’s needed is
a common-sense understanding of the usefulness of in-line
documentation, coupled to a consistent methodical approach. A bit
of thoughtfulness in these areas will pay handsome dividends.

Guidelines

Before leaving the topics of languages, documentation and so forth
there’s one last point to make. Whatever conventions you adopt you
will need more documentation than any language alone can
provide. Programmers are of course more noted for their Let’s do
some coding attitudes than for any excessive desire to document
their programs. But eventually failure to keep adequate notes will
cost dearly, both in lessons not learnt and in lost time. The
following guidelines provide a reasonable starting point although
I'm sure that you are not going to be short of your own ideas:

e The golden rule is simple. Document whilst you are developing
the program and not afterwards. By all means tidy up the
development notes after the program is complete but don’t wait
this long before you make any notes at all. In this respect design
techniques based on Warnier diagrams provide their own
documentation as far as the progress of the design path goes.
You’'ll usually need however to keep plenty of other notes as
well.
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If possible try to develop a pseudo-standard layout for all your
projects. Produce development notes that, in conjunction with
any design work, will show what the objectives of writing the
program were, and explain the reasons behind your approach.
The task of producing this documentation is not quite as
onerous as it might seem. If you have a text editor program then
you can keep most of the documentation on disk, which has the
advantage that it is very easy to keep up to date.

Keep all of your design diagrams etc, and make notes about the
problems you encounter during the development. Especially note
any assumptions you make that might affect program operation
if they were changed in the future. Note also which parts of the
code are dependent on, eg the operating system 1/0
characteristics, particular control characters that might vary
from system to system etc.

If the routines are small then include the documentation with
source code. Remember, if a routine requires a particular format
for the data that it works on, then provide some sort of
indication within the routine itself so that the general ideas
behind it are apparent. Use titles that indicate what operations
the routines perform.

Keep some details within the source code itself telling you the
name of the program, when it was written, where any additional
documentation may be found and notes about other points
which might be relevant. A simple scheme is usually all that is
required as such that shown in Figure 6.1. below. Don’t bother
about trying to understand what the code does but do notice
how much use I've made of understandable labels, variable
names and in-line comment.
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*

*

*

*

*

AUI-SPELL PATCH: word_count.s for version 0.10 *
*
Programmer: Paul Overaa *
*
Date: 1st March 91 *
*
Patch for analysing an ASCII file and counting Lt
words and linefeeds. *

a0 is loaded with the address of the start of the buffer
a1l holds the start of the current word
dd  holds the character count of the current word
d5 is loaded with the total number of characters in the
file

XDEF _WordCount

XREF _g_buffer_p

XREF _g_filesize

XREF _g_line_count

XREF _g_word_count

lowercase_z equ $7A
lowercase_a equ $6

luppercase_z equ $5A
uppercase_a equ $41
LINEFEED equ $0A

_WordCount movem.l a2-a6/d2-d7,-(sp) preserve for Lattice

It's easy to get confused about the next line of code so
here's a general note which might help................ If
the C program had a declaration like UBYTE g_buffer[10000]
then the address of the variable would be the start
address of the buffer area and we'd use immediate address
-ing, i.e. move.l #_g buffer_p,a0, to load a0. BUT.......
since we are actually using AllocMem() to get memory we




Program Documentation
| s s s TR T T R R o )

* have made the declaration LONG g buffer_p, so it's the

* CONTENTS of g _buffer_p that need to be loaded into a0,

* hence we use a move.l _g buffer_p, a0 instruction instead !
move.l ¢_buffer_p,a0 buffer start - see above note
move.l g_filesize,ds characters in file
move.l #0, g word_count no words yet !

FINDSTART cmpi.b #lowercase z,(a0) is char a-z ?
bhi NOTLOWERCASE
cmpi.b #lowercase_a, (a0)
bcs NOTLOWERCASE

move.l a0,a1 put word start in a1
moveq #1,d4 initialize character count
bra START_FOUND now look for end

NOTLOWERCASE cmpi.b #uppercase_z,(a0) is char A-Z ?
bhi NOTLETTER
cmpi.b #uppercase_a, (a0)
bcs NOTLETTER

move.l a0,al put word start in ai

moveq #1,d4 initialize character count

bra START_FOUND now look for end
NOTLETTER cmpi.b #LINEFEED, (a0) end of line char ?

bne NOTLETTER1
addq.l #1, g line_count count line

NOTLETTER1 addq.l #1,a0 point to next character
subq.l #1,d5 decrease characters left count
bne FINDSTART and see if that's the word

start

bra FINISH
START_FOUND addq.l #1, g word_count count this word

FINDEND addq.l #1,a0 point to next character
subg.l #1,d5 decrease characters left count
beq FINISH end of file found so quit

cmpi.b #lowercase_z,(a0) is char a-z ?
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bhi NOTLOWERCASE?2
cmpi.b #lowercase_a,(a0)
bes NOTLOWERCASE2
addq.b #1,d4 increment 8 bit character count
bra FINDEND
NOTLOWERCASE2 cmpi.b #uppercase_z,(a0) is char A-Z ?
bhi NOTLETTER2
cmpi.b #uppercase_a,(a0)
bcs NOTLETTER2

addq.b #1,d4 increment character count
bra FINDEND
NOTLETTER2 cmpi.b #LINEFEED, (a0) end of line char ?

bne NOTLETTER3
addq.1 #1, g _line_count count line

NOTLETTER3 addq.1l #1,a0 move to next character
subq #1,d5 decrease characters left count
bne FINDSTART
L R T *
FINISH movem.l (sp)+,a2-a6/d2-d7 re-instate for Lattice
rts back to C
e e *

Figure 6.1. A typical piece of documented code.

Since the programs that you write are part and parcel of your
documentation it is worth digressing for a moment to make the
following point: in the same way that a standardised
documentation layout helps to provide consistency, so does a
standardised program layout. But all your programs are different?
Well yes, to a certain extent this is true, but there are many things
about the overal! structure that will often be similar and a bit of
consistency in style and overall layout can go a long way!



Introduction

to the Amiga

Environment

Unless you have come to the
Amiga via the world of Unix or
the mainframe, most of the
ideas related to multi-tasking
will be new to you. Similarly
there may be a lot of other
issues concerning the
protocols which Amiga
programs need to adopt that
may seem rather complex, to
say the least. None of this
complexity however is there
just for the sake of it and by
learning about and applying
the rules that your programs
must follow to co-exist in a
safe and system controlled
manner, you will save yourself
much grief when you move on
to the writing of larger
programs.

You know already that on the
Amiga many programs can be
running at the same time.
Imagine the chaos which
would ensue if one program
suddenly decided it wanted to
take over control of the disk
hardware whilst another
program was using it. These
types of contention issues,
where two or more programs
could conceivably be trying to
use the same system
resources at the same time,
cannot be solved at the
hardware level. On the Amiga
a software system has been
devised which solves this
problem, thus making it
possible for many different
programs to share a common
set of hardware resources. A
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key element in this scenario is the Amiga’'s multi-tasking Exec
software. But before discussing Exec itself, a few words about some
other Amiga entities are needed.

Devices

As far as hardware access is concerned the Amiga places a software
layer, based on the use of a software entity called a device, between
the real hardware and the applications programs. If, for example,
your program wishes to gain access to the serial port it must try to
open the serial device. Providing the device is successfully opened
the program then writes or reads its serial data using the serial
device and not the underlying hardware.

This arrangement provides all programs with a standardised way of
communicating with the Amiga’s hardware and neatly solves the
potential contention issues. It doesn’t alter the fact that sometimes,
because a piece of hardware is already in use, a program will not
always be able to open the corresponding device, but it does mean
that programs can ask and be informed about what is and what is
not available for use at any given time and can therefore take some
appropriate actions.

If, for instance, during the time the serial device was being
exclusively used by one program, another program tried to gain
access to the serial device to read and write totally unrelated data,
the open serial device request would fail. This is the system’s way
of telling the second program that the underlying hardware is not
available for use.

In short then the Amiga’s devices provide this sort of standardised
software interface between the programs which may be running and
the hardware itself. See Figure 7.1.

Programs open these devices and then tell them, rather than the underlying hardware,
what operations they wish to perform.

' A B B '

Trackdisk Audio Serial Parallel Keyboard Gameport
device device device device device device
Disk control Audio Serial port | [Parallel port| | Keyboard Joystick and

hardware hardware hardware hardware hardware mouse ports

Figure 7.1. Beneath the device software lies the real Amiga hardware.
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Because of this approach you’ll realise that, initially at least, it is
the devices which the programmer needs to understand rather than
the underlying hardware. There are incidentally other Amiga
devices, such as the Console and Input devices, which are not
directly tied to particular hardware units.

The device software barrier is not the only one which isolates an
Amiga programmer from the underlying hardware because a similar
situation exists with the main processor itself. On the Amiga the
chances, even once you are an experienced system programmer, of
getting anywhere near the 68000 microprocessor’s on-chip
interrupt system are very remote unless you are prepared to take
over the whole machine. Interrupts are hardware signals which
cause the processor to stop what it is doing and execute a pre-
determined piece of code called an interrupt routine.

Why? Again, in a word, multi-tasking. This time the issues are to do
with how the processor is able to appear to run more than one
program at any given time. In reality a single 68000 chip can only
run one program at a time, so the only way that the Amiga can
multi-task is for the processor time to be physically shared amongst
the various programs wishing to run. Each program in turn has to
be given a bit of time to run and when this time slot is up the
program has to be suspended whilst another program is activated.

This, as you might imagine, is not a trivial task. Each program must
think that it has a virtual machine all to itself. Programs must have
their own stacks and whenever the execution of a program is
temporarily suspended, things like current microprocessor
registers will need to be preserved. When the same program is
again given the chance to run, all of this information must be re-
instated before the program can continue running.

Such tricks are achieved with the help of some clever programming
of the 68000 interrupts. Exec keeps track of the state of the multi-
tasking game both at the end of all interrupt processing and on
occasions when a particular task has indicated that it wishes to
sleep, ie become inactive, for a while. A typical example of this
latter situation would be a program which is waiting for a user to
hit a gadget before doing anything. Such programs can call a Wait()
function which results in program execution being suspended until
a gadget is actually selected by the user. The benefits should be
obvious - during such times the processor doesn’'t have to waste
time running a program which is effectively sitting idle but it can
be getting on with something else.
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Enter Exec

The software which performs this task switching magic is called
Exec. Every time, for example, a vertical blanking interrupt occurs
the current tasks are examined and, depending on the system
conditions, a decision is made as to whether to allow the current
program to continue running or whether to suspend it and give
another program the chance to run.

The process of deciding which task should be running, and then
kicking it off (getting it going) if necessary, is called task-
scheduling. If all tasks have equal priority then they are given equal
shares of the processor’s time and each task, providing it is in fact
ready to run, takes its turn using an I'm next for some processor
time task queue arrangement, known as a round robin scheme.
Because the tasks themselves have no say in whether they run or
not, this time-slicing is called pre-emptive task-scheduling.

For now though we need to get back to the interrupts issues. The
68000 has three interrupt lines which are used together to provide
interrupts of differing priority. It's important, at this stage, to point
out that the Amiga’s interrupt system is not purely based on the
68000 facilities - something is happening at a higher hardware
level. One of the Amiga custom chips, the 4703 (known as Paula) is
actually watching fifteen different sources of interrupt, both
hardware and software instigated, and it's this chip that then
generates the real 68000 signals.

So, disk, serial I/0 related, copper, vertical blanking, blitter,
audio,software generated interrupts and a number of other
interrupt sources all pass through Paula as interrupts of varying
priority levels. One of Exec’s most important jobs is to housekeep,
ie look after, the whole of this interrupt system. Another is to
provide multi-tasking facilities for the whole machine, ie to
organise and perform pre-emptive task scheduling. When you also
realise that the Amiga system allows any number of applications
programs to set up their own interrupt jobs and that these, when
executed with Exec’s blessing, slot neatly into the existing system
interrupt arrangements, you'll conclude that we are talking serious
software here. Exec deserves, and should be treated with, the
utmost respect!

Now for the bottom line. Exec, in order to achieve this magic, must
keep absolute control not only over the real 68000 hardware
interrupt system but the whole of the interrupt subsystem. This is
why you will never, for example, deal with the 68000 interrupts
directly - you will deal with Exec, the software layer which will
handle your needs and translate them into a form suitable for the
Amiga’'s complex multi-tasking environment.
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The beauty of Exec is that the multi-tasking is effectively
transparent so your programs will rarely need to worry about the
underlying complexity. Other facilities, such as those which allow
messages to be passed between various tasks, are not transparent
and it important to understand them if you wish to program at the
Exec level.

AmigaDOS - the Amiga’s Disk Operating System

AmigaDOS is a multi-processing operating system designed
primarily for the single user. This is different from say Unix which
was designed to be a multi-user, multi-tasking, operating system.

AmigaDOS handles the disk filing system and allows many jobs
(processes) to run simultaneously. Much of the magic of AmigaDOS,
the Amiga’s disk operating system, is actually due to the underlying
Exec facilities. In a sense AmigaDOS is built on top of the Exec and
trackdisk components of this system jigsaw puzzle so, from a
purely schematic viewpoint, we can show the arrangement as in
Figure 7.2.

AmigaDOS Processes and
File Subsystem

Exec Trackdisk
device
68000 Disk control
processor hardware

Figure 7.2. Programs interact with the hardware via
AmigaDOS, Exec and system devices.

If we now superimpose this sketch onto that of Figure 7.2 shown
earlier, a useful picture starts to emerge. See Figure 7.3.
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AmigaDOS Processes and
File Subsystem
Trackdisk Audio Serial Parallel Keyboard Gameport
Exec . . . X . :
device device device device device device

A R S SR DR R

Disk control Audio Serial port | |Parallel port| | Keyboard | | Joystick and
hardware hardware hardware hardware hardware || mouse ports

68000

Figure 7.3. Programs interact with the hardware via
AmigaDOS, Exec and system devices.

Already you should realise that the Amiga programmer is, to a very
large extent, isolated from the real hardware. This is true even for
the low-level programmer unless, as is the case with some games
programmers, they are prepared to take over the whole machine
and forfeit all the advantages of multi-tasking.

The Amiga System Libraries

Another important component of the Amiga’s software is the
system’s library routine arrangement. Library routines are just
generally useful routines which have been written and included as
part of the operating system software.

Where the Amiga differs from that of many less sophisticated
computers is in the actual arrangement which has been adopted to
implement these libraries. If you wanted to use a certain system
call in the good old eight bit days (of CP/M machines and
computers like the Sinclair ZX81, Apple Il and Commodore 64), the
chances are that you would use either a function number
arrangement, where you made a call to a fixed entry location but
provided a value in one of the processor registers which told the
operating system which service you required, or alternatively you
would actually know the memory address of the system routine
being called.

For Amiga programmers those days are over because most of the
time you will not know where the system routines are. Some may be
held in ROM, some will be placed into memory as the machine
starts operating, and some taken from disk as and when a program
decides that they are needed! Worse than that, the routines which
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are loaded into memory are not assigned fixed locations, they
essentially get placed in any convenient area that is available and
that means that the location of the library routines can change each
time a library is used.

To move into this area of Amiga programming there are two things
you'll need to know. Firstly how to find these system routines, and
secondly how to use them once you have found them. These are
questions which I'll deal with in Chapter 10.

Intuition, the Amiga’s high-level graphics interface which we’ve all
come to understand and love, is built on the facilities provided by
the graphics and layers libraries. By working in conjunction with
the input device, a slightly higher-level device that is continually
being fed information from the Amiga’s keyboard and gameport
devices, Intuition is kept informed about what, if anything, users
are doing in the outside world.

The Amiga’s Workbench uses Intuition facilities to provide its WIMP
orientated user interface. Intuition, like Exec, is essentially a mass
of pre-written routines much the same as any of the other system
library. Because of the way both of these components interact with
other parts of the system it is however useful to show them as
distinct components.

The Final Picture

On top of everything we've discussed comes the applications
programs themselves - the programs which you run to do useful
work! As you’ll doubtless already know, the Amiga supports both
WIMP orientated interaction(using Intuition’s windows, gadgets,
menus etc)and command line CLI/Shell type programs.

Programmers can interact with Intuition to achieve many high-level
WIMP orientated operations, can access the hardware via the
Amiga’s device mechanisms, can use a large number of pre-written
library functions to simplify common programming tasks, and can
allow AmigaDOS to handle the nitty gritty details of disk file
management and related housekeeping jobs. In addition to this the
graphics/display subsystem (which includes both hardware
components, such as the copper and the blitter circuits, and
software components for handling things like animated graphics) is
also available to any applications program which needs it.

When we put all of this together we end up with a picture, which |
though far from complete, should provide a working appreciation |
of how the various Amiga system components fall into place.
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CLI/Shell processes and CLI based The Amiga's Workbench and WIMP based
applications programs applications programs
Applications programs can also use the Amiga graphics
. R —>
devices directly! subsystem
| Amiga system
Libraries
s Intuition
AmigaDOS processes and )
file subsystem - Input device
Ex Trackdisk Audio Serial Parallel Keyboard Garneport
ec . . ) . ; :
device device device device device device
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Disk control Audio Serial port | |Parallel port| | Keyboard | | Joystick and
hardware hardware hardware hardware hardware | | mouse ports

68000

Figure 7.4. Relationship between the main software components
and the underlying hardware,

As you will now appreciate, Exec, Devices, AmigaDOS, System
Libraries and Intuition itself are extremely important.
Understanding these components is absolutely essential if you wish
to become a serious Amiga programmer. Luckily all that is really
needed initially is an overall appreciation of the system coupled
with some more detailed information on areas which are likely to
be immediately useful to you. It is these latter topics that I'll deal
with over the next few chapters but to finish this chapter here are a
few general notes on some hardware related issues that you may
already have been exposed to.
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The PAD, Chip Memory, Bus Contention, and the ECS

Part of the power of the Amiga is undoubtedly due to the custom
chips known as Paula, Agnus and Denise. These chips, known
collectively as the PAD, are capable of running in parallel with the
main 68000 processor — using odd clock cycles when the 68000 is
not accessing external memory. A gate mechanism controls access
of the system bus and thus ensures that the RAM/ROM chips, the
68000 processor, the I/0 chips, and the PAD chips are all connected
to the system bus at the appropriate times.

I've already mentioned the relationship of the 4703 Paula chip to
the interrupt subsystem. The PAD also controls twenty five direct
memory access (DMA) channels which allow RAM access to be
achieved without using the 68000 processor. These DMA channels
are dedicated to specific uses - 6 channels are for the screen
bitplane access, 8 for sprites data, 1 for the co-processor (copper),
4 for the blitter, 2 for disk DMA and 4 for audio.

DMA access is restricted to chip memory. You've no doubt heard
the terms chip memory and fast memory and as likely as not you
already know what they mean. Just in case however a few words of
explanation are in order.

In actual fact there’s nothing different about particular RAM chips
themselves which lead to labels like chip memory and fast memory.
It is all to do with the way the gate mechanism grants access to the
system bus and to the effect on certain areas of addressable
memory. Here are some details. The Amiga’s Motorola 68000 16/32
bit processor has an address space of 16 megabytes and, with the
Amiga’s memory map, 8 megabytes of this are available for random
access memory (RAM). The reason that not all of this addressable
memory is the same stems from the fact that part of the RAM
address space is shared by both the 68000 processor and the
Amiga’s three custom chips. It is this shared memory that is
commonly referred to as chip memory.

Now I've already mentioned that Paula, Agnus and Denise handle a
number of specific tasks involving graphics, general screen display
operations, DMA etc. The blitter incidentally, the device which can
move pixel data around the screen at speeds approaching one
million pixels per second, is part of the Agnus chip. The important
point about all of this is that, under certain conditions these
powerful chips can actually lock out the main 68000 processor, an
operation known as cycle-stealing. This only happens when
absolutely necessary (and during these cases the custom chips are
performing operations more efficiently than the 68000 could do
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anyway) but the end result nevertheless is that programs actually
running in chip memory at such times get somewhat rudely
prevented from doing so!

Some clever hardware tricks however allow the 68000 processor,
even whilst locked out of chip memory space, to still access RAM
memory outside of this region. This non-chip memory, called fast
memory for fairly obvious reasons, is therefore an ideal place for
having your runable programs. For maximum speed therefore it is
worth remembering that, ideally, you want to have both chip and
fast memory available - programs can therefore run in fast memory
and will not be slowed down by any custom chip cycle-stealing
operations!

Fat Agnus

The amount of address space that these original custom chips
could share was limited to a 19-bit address. This meant that the
above mentioned bus contention problems only affected the lower
512K of the machine. It also meant that no matter how much RAM
was available in the machine the custom chips could only access
that lower 512K. In the early Amiga days this wasn’t too much of a
limitation but as Amiga programs (especially graphics and
animation programs) have grown in size and power the 512K
limitation is now becoming a little restrictive.

To put these numbers into perspective a single 5 bitplane high
resolution PAL screen will soak up 100K of chip memory, and a
corresponding interlaced display takes 200K, ie almost 40% of all
the chip memory available on a 512K machine. When you realise
that DMA sound samples, graphics objects and various other items
often need to be stored in custom chip accessible memory then
512K begins to look almost miserly.

Several years ago Commodore began working on an enhanced chip
set (ECS) and this included a replacement for Agnus called Fat
Agnus. This new version, so called because of its physical shape,
effectively does the same job as the original chip but reduces the
support chip component count - all clock generation for the Amiga
system for instance is now incorporated into Fat Agnus as are the
control signals for handling chip RAM access.

The big difference as far as chip memory goes though is that Fat
Agnus now has address lines which can access twice as much
memory. Hence a machine fitted with Fat Agnus has one megabyte
of shared address space and so can have one megabyte of chip
memory fitted. Obviously this is a big advantage for graphics
intensive operations like animation especially when a suitable
amount of additional fast memory is also available to the system!
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The Copper

The Amiga contains a beam-synchronised graphics co-processor
which can execute its own programs, called copper lists. It is able
to effectively track the display video beam as it moves down the
screen and can be programmed to carry out specific operations,
such as changing bitplane pointers, altering the colour values in the
hardware colour registers or using the blitter to carry out high-
speed graphics operations. The copper can even affect external
memory by issuing a CPU interrupt. There are some excellent
display tricks which can be done by programming this chip but
these fall firmly into the domain of Amiga systems programming
and are not suitable material for an introductory assembly language
book.

An Admission of Guilt

The overview you’'ve just read has been made deliberately easy
going. Many things which perhaps could have been mentioned have
been left out. Why? It is because to mention them would have
meant that [ would have to have explained them and that would
have turned a hopefully easily understood general overview into a
more detailed, but far more disjointed, account. Subsequent
chapters will now deal with a number of 68000 system
programming issues in more detail but I am hoping that now the
general Amiga system framework has been outlined, at least some
of the topics will be less traumatic for the newcomer than they
might otherwise have been.
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The Amiga
System
Include
Files

The Amiga has a large
collection of system include
(header) files available. In fact
two distinct versions of these
files exist, one set for C
programmers and the other
set for assembly language
programmers. The file set
which assembly language
programmers use have a .i (i
for include) name convention
whereas the corresponding C
language equivalents use .h (h
for header) suffix filenames.
Essentially the material which
they contain serves identical
purposes but, because of the
differences between low-level
68K assembler and the high-
level C language, there are
equivalent differences in the
way various definitions are
created. This book is devoted
to assembly language so I'll be
talking almost exclusively
about the .i include files. Bear
in mind that when I mention
an include file such as
exec/memory.i that there is a
corresponding file exec/
memory.h available for those
working in C.

So, what do these files
contain? Basically thousands
of predefined constants,
template definitions for things
like screens and windows, and
macros all designed to make
life easier for you the
programmer. That said, they
only make life easier if you
understand them and are
familiar enough with them to
use them effectively.
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An Example System Include File

The best way to learn how to get the maximum benefit from the
Amiga include files is to look at them, use them, and think about
them - slowly but surely you will learn to find your way around
them and, with practice, learn to use them in the way Commodore
intended. If you are new to assembler you have a golden
opportunity to study them in detail. Make the most of this
opportunity, the effort which has gone into them is considerable
and, along with examples from the world of Unix and the
mainframe, these Amiga system include files are amongst the best
ever written!

Purely from the point of view of space it is not practical to list
every Amiga system file. Nevertheless an example of a .i include file
is going to be given in order to provide a reference point for
subsequent discussions. The following file, which is the 1.3 release
intuition/screens.i systems file, is reprinted courtesy of

Commodore-Amiga Inc:

IFND INTUITION_SCREENS_I
INTUITION_SCREENS_I SET 1

* %

** $Filename: intuition/screens.i $
** $Release: 1.3 $

* %
* %

* %

** (C) Copyright 1987,1988 Commodore-Amiga, Inc.
kik All Rights Reserved

* %

IFND EXEC_TYPES_I
INCLUDE "exec/types.i”
ENDC

IFND GRAPHICS GFX_I
INCLUDE "graphics/gfx.i"
ENDC

IFND GRAPHICS_CLIP_I
INCLUDE “graphics/clip.i"
ENDC

IFND GRAPHICS VIEW I
INCLUDE “graphics/view.i"
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ENDC

IFND GRAPHICS RASTPORT_I
INCLUDE "graphics/rastport.i”
ENDC

IFND GRAPHICS_LAYERS_I
INCLUDE "graphics/layers.i"
ENDC

STRUCTURE Screen,0
APTR sc_NextScreen ; linked list of screens
APTR sc_FirstWindow ; linked list Screen's Windows

WORD sc_LeftEdge ; parameters of the screen

WORD sc_TopEdge ; parameters of the screen

WORD sc_Width ; null-terminated Title text

WORD sc_Height ; for Windows without ScreenTitle
WORD sc_MouseY ; position relative to upper-left
WORD sc_MouseX ; position relative to upper-left
WORD sc_Flags ; see definitions below

APTR sc_Title

APTR sc_DefaultTitle

; Bar sizes for this Screen and all Window's in this Screen
BYTE sc_BarHeight

BYTE sc_BarVBorder

BYTE sc_BarHBorder

BYTE sc_MenuVBorder

BYTE sc_MenuHBorder

BYTE sc_WBorTop

BYTE sc_WBorlLeft

BYTE sc_WBorRight

BYTE sc_WBorBottom

BYTE sc_KludgeFill00 ; This is strictly for word-alignment
; the display data structures for this Screen

APTR sc_Font ; this screen's default
; font
STRUCT sc_ViewPort,vp_SIZEOF ; describing the Screen's

; display
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STRUCT sc_RastPort,rp_SIZEOF ; describing Screen
; rendering

STRUCT sc_BitMap,bm_SIZEOF ; auxiliary graphexcess
; baggage

STRUCT sc_LayerInfo,li_SIZEOF ; each screen gets a
; LayerInfo

; You supply a linked-list of Gadgets for your Screen.

; This list DOES NOT include system Gadgets. You get the
; standard system Screen Gadgets by default

APTR sc_FirstGadget
BYTE sc_DetailPen ; for bar/border/gadget rendering
BYTE sc_BlockPen ; for bar/border/gadget rendering

; the following variable(s) are maintained by Intuition
; to support the DisplayBeep() color flashing technique

WORD sc_SaveColoro0
; This layer is for the Screen and Menu bars

APTR sc_BarLayer ; was "BarlLayer"
APTR sc_ExtData
APTR sc_UserData ; general-purpose pointer to User data

LABEL sc_SIZEOF
; =-FLAGS SET BY INTUITION =---------commmmoomommooeooamme

; The SCREENTYPE bits are reserved for describing various
; Screen type available under Intuition.

SCREENTYPE EQU $000F ; all the screens types available
; --the definitions for the Screen Type------------------------
WBENCHSCREEN EQU $0001 ; Ta Da! The Workbench
CUSTOMSCREEN EQU $000F ; for that special look

SHOWTITLE EQU $0010 ; this gets set by a call to

)

; ShowTitle()
BEEPING EQU $0020 ; set when Screen is beeping
CUSTOMBITMAP EQU $0040 ; if you are supplying your own

; BitMap
SCREENBEHIND EQU  $0080 ; if you want your screen to open

; behind already open screens

SCREENQUIET EQU $0100 ; if you do not want Intuition to
; render into your screen
; (gadgets, title)

STDSCREENHEIGHT EQU -1 ; supply in NewScreen.Height



The Amiga System Include Files

STRUCTURE NewScreen,O

WORD ns_LeftEdge ; initial Screen dimensions
WORD ns_TopEdge ; initial Screen dimensions
WORD ns_Width ; initial Screen dimensions
WORD ns_Height ; initial Screen dimensions
WORD ns_Depth ; initial Screen dimensions
BYTE ns_DetailPen ; default rendering pens (for
; Windows too)
BYTE ns_BlockPen ; default rendering pens (for
; Windows too)
WORD ns_ViewModes ; display “modes" for this Screen
WORD ns_Type ; Intuition Screen Type specifier
APTR ns_Font ; default font for Screen and
; Windows
APTR ns_DefaultTitle ; Title when Window doesn't care
APTR ns_Gadgets ; Your own initial Screen Gadgets

if you are opening a CUSTOMSCREEN and already have a
BitMap that you want used for your Screen, you set the
flags CUSTOMBITMAP in the Types variable and you set
this variable to point to your BitMap structure. The
structure will be copied into your Screen structure,
after which vou may discard your own BitMap if you want

APTR ns_CustomBitMap
LABEL ns_SIZEOF
ENDC ; INTUITION_SCREENS_I

e we we ws we wa

You'll notice that the intuition/screens.i file starts by conditionally
including a number of other files. The exec/types.i file for instance
provides C language type definitions of a number of standard
variable types, such as WORD, APTR and so on. These are not
typedef style definitions as such - they are based on macro
definitions which are as near as the 68000 assembly language
programmer can get. STRUCTURE is another macro that is
important because it provides the 68000 coder with high-level C
type data structure facilities. The use of these and other important
system macros will be dealt with in the next chapter.

A number of EQUate style definitions are also present but the bulk
of the file includes two data structure definitions known as a Screen
and NewScreen. To appreciate the significance of these structures
it’'s necessary to know a little about what they represent.
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Screen definition, in the Intuition sense, is achieved by setting up a
complex data block known as a Screen structure. A quick look at the
field definitions given in the RKM manuals or your compiler include
files will convince you that building such screen structures from
scratch is far from easy. Display memory has to be allocated, and a
great many associated structures have also to be created and
initialised. Fortunately you will never have to do this because
Intuition itself can handle most of the setting-up procedures
automatically.

To open a custom screen all you the prograrnmer has to do is
define the basic characteristics of the screen you require. This is
done by initialising a much smaller structure called a NewScreen
structure. Once these NewScreen details are defined it is possible to
use an Intuition routine called OpenScreen(). This function takes
the parameters provided in the NewScreen structure, builds the real
Intuition Screen structure needed to describe the display, and then
returns a pointer to the structure it has prepared. As usual if things
go wrong you’'ll get a NULL-pointer returned which is, of course, the
system’s way of telling you that the OpenScreen() request failed!

You'll see from the example include file that, to the assembly
language programmer, a NewScreen structure looks like this:

STRUCTURE NewScreen,0

WORD ns_LeftEdge ; initial Screen dimensions
WORD ns_TopEdge ; initial Screen dimensions
WORD ns_Width ; initial Screen dimensions
WORD ns_Height ; initial Screen dimensions
WORD ns_Depth ; initial Screen dimensions
BYTE ns_DetailPen ; default rendering pens (for
; Windows too)
BYTE ns_BlockPen ; default rendering pens (for
; Windows too)
WORD ns_ViewModes ; display “modes” for this Screen
WORD ns_Type ; Intuition Screen Type specifier
APTR ns_Font ; default font for Screen and
; Windows
APTR ns_DefaultTitle ; Title when Window doesn't care
APTR ns_Gadgets ; Your own initial Screen Gadgets

APTR ns_CustomBitMap
LABEL ns_SIZEOF
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From the practical viewpoint the thing that is most important to the
programmer working at the Intuition level is an understanding of
the fields present in the NewScreen structure. For the most
comprehensive details of screen use, and all the other Intuition
objects, you need to have access to the official RKM manuals. Here
however are a few details of the information held in the NewScreen
structure.

ns_LeftEdge

The field represents the x position of the screen as it opens. It is
provided for upward compatibility only and should be set to zero
at the current time.

ns_TopEdge

This represents the y position of the screen as it opens and since
most Intuition screens will open with their top edges in line with
the real top edge of the display this value is usually also set to
zero.

ns_Width

This field represents the width of the screen and is usually set to
the nominal values of either 320 (for a low res display) or 640 (for a
high res display).

ns_Height

This defines the height of the screen in scanlines. Non-interlaced
PAL displays commonly use a value 256 (200 for equivalent NTSC
displays).

ns_Depth

This field identifies the number of bitplanes being used for the
screen.

ns_DetailPen

This identifies the colour register to be used for details such as the
screen title,

ns_BlockPen

This is another colour register number which this time identifies
the colour register which will be used for area fills.

ns_ViewModes

A number of flags are defined in the system headers which allow
certain display attributes to be set:

HIRES selects high-resolution mode
LACE selects an interlaced display
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SPRITES
DUALPF

HAM

EXTRA_HALFBRITE

ns_Type

set this flag if you wish to use sprites

in theory this flag tells the system that the
screen will be using two separate playfields
(playfield is just another term for screen
background). In practice there are better ways
of creating dual playfield displays.

this flag informs the system that you wish to
use the hold and modify display mode.

informs system that an extra bitplane for
extra half brite mode will be used.

This field can be set using a number of predefined flag values:

CUSTOMSCREEN

SCREENBEHIND

SCREENQUIET

CUSTOMBITMAP

ns_font

you will always set this flag because all
screens which are explicitly opened will be
custom screens.

if this flag is set the screen will open behind
any existing screens. It is sometimes useful to
do this so that any preliminary screen drawing
operations can be hidden from the user. When
the screen preparation is complete it can be
brought to the front of the display.

screens opened with this flag set do not have
the usual title bar or gadget rendering.

normally Intuition allocates a bitmap
structure and the associated bitplane display
memory. If this flag is set you are effectively
telling Intuition not to bother to do this. In
other words you are indicating that you will
supply the appropriate bitmap structure and
bitplane memory.

This is a pointer to a TextAttr structure used to describe the default
font for the screen. Set it to NULL if you wish to use the font
specified in the Preferences settings.

ns_DefaultTitle

This is a pointer to a NULL terminated screen title string. Set to
NULL if a title is not required.

ns_Gadgets

This field, which will be the first item in a list of user-defined
screen gadgets, is unused at present. It is provided for future
system expansion and should currently be set to NULL.
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ns_CustomBitMap

If you have set the CUSTOMBITMAP flag in the NewScreen. Types
field then you must supply a pointer to a suitably initialised BitMap
structure in this field.

Basically then the NewScreen structure is a template (a description)
of a giant block of data containing items related to the creation of a
real Intuition Screen structure. In order to use an Intuition Screen
you must create one of these data blocks and, having filled it with
suitable details, you will then be able to use this ready-made
system routine to carry out the job of creating the screen.

Function: OpenScreen()

Description: Open a custom Intuition Screen

Call Format: screen_p=OpenScreen(new_screen_p);

Registers: DO A0

Arguments: new_screen_p — pointer to initialised NewScreen structure

Return Value:  screen_p — pointer to an Intuition Screen structure. If the screen could
not be opened a NULL pointer is returned.

Custom screens, which are what the screens which we have been
discussing are called in the official system literature, have to be
explicitly closed before the program terminates and a CloseScreen()
call is available for this purpose.

Function: Close Screen()

Description: Close an Intuition Screen

Call Format; CloseScreen(screen_p);

Registers: A0

Arguments: screen_p — pointer to an existing Screen structure

Return Value: None

It should be apparent from the above discussion that an Amiga
programmer is provided with an immense amount of system
support. Equally apparent should be the fact that it is virtually
impossible to program the Amiga without having access to details
of the library functions, flag definitions, structure templates and so
on, that the Amiga programmer is expected to use. This being so,
it’s time that some very important books were mentioned.

The Official Documentation

Throughout this book you’ll find references to the Addison Wesley
Amiga Technical reference manuals. Why? It is because they
constitute the official Amiga programming documentation and,
whether you've obtained them yet or not, it is worthwhile knowing
a bit about their contents. The manuals have recently been updated
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to include additional material relevant to Workbench 2 and the
following notes will give you a summary-style rundown on what
you can expect to find in the current versions.

Amiga ROM Kernel Reference Manual - Includes & Autodocs

This volume, as the name suggests, contains details of all of the
Amiga’s Include files and function autodocs. It also however
contains a host of other useful items.

The first section provides the library summaries and it must be said
at the outset that this material is essential for the serious Amiga
user. Why? It's because it contains details and use instructions for
every routine in every library. Function descriptions are organised
alphabetically, library by library and because an alphabetical
function index is also provided it is easy to find your way around.

Following the function details comes the devices section which
contains straight summaries of the device calls etc. This is followed
by the disk/cia/potgo and miscellaneous resource summaries after
which comes the very hefty C and assembly language include file
listings. This volume, incidentally, also includes the source code
for a sample library.

Plenty of other reference charts are provided which give details of
the Amiga libraries and their function offsets, assembly language
include file structure prefixes, and structure offset reference
details. There is also a hardware register map and a C language
include file cross-reference table.

Amiga ROM Kernel Reference Manual - Libraries

This volume deals with Intuition (the Amiga’s high level
programming interface) and cover the use of screens, windows,
gadgets, menus etc, from the programmers viewpoint. There are
plenty of examples (mainly in C) to help the newcomer and the
material is, in general, relatively straightforward to understand - so
the reader has a moderately easy introduction to what is
undoubtedly a most complex computer system.

Hidden beneath the Amiga’s Intuition interface lie some very
complex software components. One such component which both
merits, and gets, special attention is the multi-tasking Exec system.
Topics covered include the use of Exec functions, library
organisation, message passing, interrupts, and Exec’s 1/0
techniques. These are dealt with in detail and because they require
a grasp of some difficult concepts this stuff is hard work even for
experienced programmers.

This is also the volume where you can get authoritative details of
the Amiga’s superb graphics facilities. As well as general
introductions you'll find accounts of such things as the Amiga’s




The Amiga System Include Files
A A T A e A A o B A N A i

display modes, image formation, viewport creation etc, and very
detailed accounts of sprite handling, Bobs, and the use of the
system’s animation facilities.

Amiga ROM Kernel Reference Manual - Devices

This manual provides separate chapters to each of the all-important
Amiga devices, namely the audio, clipboard, console, gameport,
input, keyboard, narrator, parallel, printer, SCSI, serial, timer and
trackdisk devices. There’s a chapter on the low-level hardware
control functions and on the the Interchange File Format (IFF). The
IFF material provides useful introductory notes, the EA IFF 85
document, and the details of Form specifications. The graphics,
music/sound-sampling, and all the other IFF areas are well covered
as are many third party registered Form definitions. There is a good
selection of code examples together with a reasonable level of
tutorial style help.

Amiga Hardware Reference Manual

After a brief introduction this volume dives straight in with a look
at the Amiga’s co-processor unit, its instruction set, and its use.
This sets the scene for a discussion of the playfield hardware and
its relationship to the Amiga’s display facilities. The Amiga’s sprite
hardware, audio hardware, and the now famous blitter chip all get a
similar detailed treatment with the last two chapters being used to
describe the remaining aspects of the Amiga’s system control and
interface hardware.

If you like (or need) to get your hands dirty, ie have to understand
and program the Amiga at a low level, or if you want to understand
how to achieve things like vertical and horizontal smooth scrolling,
then the hardware manual is the place to look.

Amiga User Style Interface Guide

This volume, as the title suggests, is more about user interface
issues than coding. The volume provides basic advice on Intuition
style and consistency together with notes on Workbench, Shell,
AREXX, the clipboard IFF data sharing scheme and related issues.

You’'ll find additional details of these and a number of other
important Amiga reference books in the bibliography.
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Macro
Programming
and its
Benefits

With assembly languages, as
with any other computer
languages, you frequently find
that similar sequences of
instructions crop up again and
again. Now with sequences
that are identical one solution
is of course to write the
instructions as a subroutine
rather than waste space by
having the same instructions
duplicated in various places
throughout the program. The
subroutine approach reduces
program size and has a
number of benefits as far as
program structure is
concerned but there are still
times when inserting
duplicate sections of code is
necessary, eg to eliminate the
time in calling the subroutine.
Often subroutines are
inappropriate simply because
the various sequences of
instructions are only similar
and not completely identical.

Macros provide a powerful
solution to this dilemma
because they allow the
programmer to assign
symbolic names to sets of
instruction sequences and,
whenever the name s
encountered, the assembler
automatically expands it to
produce the original set of
instructions. This facility is
not restricted to predefined,
absolutely fixed, instruction
sequences. Macros which
contain parameter placeholder
markers can be created so
that, when the macro is used,
parameters provided with
each particular instance are
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inserted into the code that is generated. This makes it possible for
the macro programmer to generate a variety of code fragments
from each macro definition.

Motorola style macro definitions start with a label followed by the
MACRO keyword and end with the ENDM keyword. Lower case
macro and endm are also accepted but to my mind the upper case
versions mark the macro segment more clearly. The basic macro
format therefore takes this type of form:
my_macro_name MACRO
<main body of macro code>
ENDM
Parameters are specified using the backslash (\) character followed
by any alphanumeric character and as an example this macro code:
LIBCALL MACRO
move.l a6,-(sp)
move.l \2,a6

jsr \1(a6)
move.l (sp)+,a6
ENDM

would, if used in conjunction with the following line of a program:
LIBCALL _LVvODisplayBeep, _IntuitionBase
generate this sequence of instructions:

move.l ab6,-(sp)

move.l _IntuitionBase,a6

jsr _LvoDisplayBeep(a6)

move.l (sp)+,a6
There is incidentally a reserved assembler symbol, NARG, which
takes as its value the count of the number of parameters passed.
When used in conjunction with the assembler directives IFGT (if
greater than) and FAIL it becomes possible to add parameter count

error checking to a macro. The above example could for instance be
written as:

LIBCALL MACRO
IFGT NARG-2
FAIL ;too many arguments
ENDC
move.l a6, - (sp)
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move.l \2,a6

jsr \1(a6)
move.l (sp)+,a6
ENDM

This particular macro, which I look at again in Chapter 10, is
actually already present in the system’s exec/libraries.i include file
(under the name LINKLIB) and is used to generate library access
code.

Macros resemble subroutines in the sense that they provide a
shorthand reference to a frequently used set of instructions. It
should be obvious from the above discussion however that macros
are not subroutines. The code for a subroutine will occur only once
within a program, and program execution branches to the
subroutine. On the other hand, each time a macro is used the
assembler will insert a copy of the appropriate instructions (with
any parameter-specified alterations).

The advantages of the macro are numerous: shorter source
programs, the ability to take advantage of pieces of tried and tested
code, easier code changes and so on. In short, macros allow
assembly language programming to be done at a significantly
higher level than was previously possible and they are in fact an
essential part of Amiga assembly language programming.

A great many pre-defined macros have in fact been made available
to the programmer in the system header files. It is not possible to
discuss all of them but a number of them are discussed later.
Because of its importance in some of the code that we’ll look at in
later chapters, one system macro does however deserve special
mention.

The STRUCTURE Macro

I mentioned in Chapter Eight that the Amiga’s C header files
contain, amongst other things, a mass of pre-defined structure
definitions which relate to system objects such as screens and
windows and that the assembly language .i include files contain
similar structure definitions.

Now 68000 assembly language certainly doesn’t support the use of
C style structures directly, but a macro has been developed which
lets the assembly language programmer work with the next best
thing. It is called STRUCTURE and it is, arguably, one of the most
important system macros available. On the Amiga its use will
flavour almost all the assembly language code you write making it
cleaner, more comprehensible, and easier to maintain.
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Firstly however a bit of C code for comparison. Suppose we were
defining a C structure called ColourRange which stored details
about minimum and maximum colour values, a flag to indicate
whether values were increasing or decreasing, the amount of the
increase, and the current RGB values. Using C we might decide to
use something like this
struct {

UBYTE Minimum;

UBYTE Maximum;

UBYTE UpDownFlag;

UBYTE Adjustment;

ULONG Red;

ULONG Green;

ULONG Blue;

}ColourRange;
What the include file’s STRUCTURE macro allows us to do is to write
similar definitions in assembler. Here's the above ColourRange
STRUCTURE equivalent:

STRUCTURE ColourRange,0

UBYTE Minimum

UBYTE Maximum

UBYTE UpDownFlag

UBYTE Adjustment

ULONG Red

ULONG Green

ULONG Blue

LABEL ColourRange_ SIZEOF
The values UBYTE and ULONG are themselves macros which have

been designed to calculate the sizes of C variable types. UBYTE
(unsigned byte) for example actually equates to the value 1.

STRUCTURE then, is a macro that calculates the offsets for the
member labels which you've used in your definition. In the above
example the result would be these offsets. Minimum would equate
to 0, Maximum to 1, UpDownFlag to 2, Adjustment to 3, Red to 4,
Green to 8 and Blue to 12. The definition includes a preliminary
offset and a further terminal macro called LABEL which is normally
used to generate a SIZEOF label. The benefit of generating a size
value is that it becomes possible to reserve space for one type of
structure within another structure definition.
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The include files, as mentioned above, provide macros which
calculate the sizes of all the usual C types, BYTE, UBYTE, BOOL,
WORD, LONG etc, so the net effect is that if, for example, you use
ULONG in the STRUCTURE definition, the macro will arrange to add
4 (because a ULONG variable is 4 bytes long) to the offset counter
after the current assignment has been made.

The benefits? Firstly, the code is a lot more readable. Secondly, if at
some stage you make changes to the defined structure you don’t
have to worry about the offsets in your existing code - because the
macro calculates the new displacements for you. Thirdly it lets you
work, as far as the structures go, with almost highlevel language
ease. The best way to illustrate the advantages of this macro
approach is to give you a system orientated example and the one
I've chosen concerns an Intuition communications facility.

The Intuition Message System

If you had to cope with everything that Intuition took an interest in
you, as a programmer, would have your work cut out. Fortunately
programs can be selective about the type of events they wish to
receive. If, for instance, a program needs to know when disks are
inserted or removed it asks Intuition to send it a message about
these events as, and when, they occur. If the program doesn’t need
to worry about disk insertion and removal then it just does not ask
for those types of messages to be sent in the first place.

One of the ways in which Intuition can be coaxed into sending
information to a program is via Intuition’s Direct Communications
Message Port system, affectionately called the IDCMP. This is built
upon the Exec message system arrangement and provides a two
way communication process which allows your program to both
receive and transmit messages. IntuiMessages then, carry
information to and from a window’s IDCMP ports and are based on
this type of system defined message structure:
STRUCTURE IntuiMessage,O

STRUCT im_ExecMessage,MN_SIZE

LONG im_Class

WORD im_Code

WORD im_Qualifier

APTR im_IAddress

WORD im_MouseX

WORD im_MouseY

LONG im_Seconds

LONG im_Micros
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APTR im_IDCMPWindow
APTR im_Speciallink
LABEL im_SIZEOF

The easiest way to gain access to an IDCMP is to specify one or
more of the IDCMP flags when you open a window. If Intuition sees
that you’ve done this it will automatically create a pair of message
ports for that window. One port, the WindowPort, is used by
Intuition, the other is referred to as the UserPort and is for the
program’s use. Intuition arranges for signal bits to be allocated to
the message ports and it is by looking at these signal bits that we
can tell when messages have arrived.

In order to use IntuiMessages you need to be able to extract
information from the structure. Here’s the purpose of the various
fields:

The im_ExecMessage field contains message characteristics, such as
the length of the message’s body data, which are needed by the
Exec. You are unlikely to want this information and you certainly
should not interfere with it.

im_Class is a variable whose bits correspond directly with the
equivalent IDCMP flags. You will usually check the contents of this
variable against particular flag definitions so that you know what
type of message you have received.

The im_address of the object to which the message refers is
provided in the im_IAddress field. Whenever you have to find out
about the current state of Intuition objects, eg whether a Gadget is
on or off, you’ll use this address to locate the object’s structure.

The im_Code and im_qualifier fields depend very much on the type
of message, eg if the keyboard device is providing raw keyboard
data then the im_code field will contain the untranslated character
and the im_qualifier field will tell you whether the Shift or Ctrl keys
were also pressed.

Each message is stamped with mouse co-ordinates and the system
time. im_MouseX and im_MouseY are the co-ordinates of the mouse
at the time given by the im_Seconds and im_Micros fields. The
other two fields in the structure are im_IDCMPWindow, which is a
pointer to the relevant Window structure, and im_SpecialLink which
is used only by the system.

The IDCMP Flags

Standard names for the IDCMP flags are available in the include
files. They should always be used in preference to numeric values
or non-standard names. The flags are used to both select which
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types of messages you wish to receive and to distinguish between
the various types of message that may arrive at your message port.
The definitions fall into a number of categories and you will find
them in the Intuition include files. The place to look for full tutorial
explanations is the RKM libraries manual. Here however are brief
details of some of the predefined flag values:

Gadget flags

GADGETUP When the user releases the left mouse button
over a gadget that has the RELVERIFY flag set,
the program receives a message of this class.

GADGETDOWN If the gadget was created with the
GADGIMMEDIATE flag set then this message is
sent when the gadget is selected.

CLOSEWINDOW If you have a close gadget in your window then
setting this flag will give you a message telling
you when it has been selected. Intuition doesn’t
close anything, but leaves that up to the
applications program.

Mouse Flags

MOUSEBUTTONS Causes reports about mouse button events to be
reported providing they do not mean anything
to Intuition. The Code field of the message tells
you which button was pressed or released. It
will contain one of four flags: SELECTUP,
SELECTDOWN, MENUUP or MENUDOWN.

Menu Flags

MENUPICK You'll get a message if the user has pressed the
menu button. If an item was selected then the
menu number will be in the Code field. If no
selection was made this field will be set to
MENUNULL.

Miscellaneous Flags

DISKINSERTED If this flag is set you will be told about disks
being inserted or removed.

DISKREMOVED Again you will be told about disks being
inserted or removed. Two flags are needed
because when these events happen you need to
know which one has occurred.
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Indirect Addressing With Displacement

Now the big question. Knowing that the system provides a ready
made template for an IntuiMessage structure style block of data,
how do we get information into it (or from it)? It turns out that the
68000’s indirect addressing schemes come in very useful but,
before discussing these issues, however let’s first set the scene as
far as the IntuiMessage structure is concerned.

If you count the number of bytes present in each field and then
work out the displacements of each field relative to the base of the
IntuiMessage you'’ll get these results:

Displacement Field

48 im_Speciallink
44 im_IDCMPWindow
40 im_Micros

36 im_Seconds

32 im_MouseY

30 im_MouseX

28 im_IAddress

24 im_Qualifier
22 im_Code

20 im_Class

0 im_ExecMessage

You will never need to calculate these offsets when using a system
defined object because the displacements have been provided for
you (using the STRUCTURE macro) in the include files. Since the
offset calculations have been done, all you have to do is use them,
and that's where indirect addressing comes in.

Indirect addressing, as you’ll already know from earlier
discussions, implies that instead of specifying an address, we
specify the location of the address. If we take an example of
ordinary register indirect addressing such as:

move.l (a0),d2

then we are using register indirect addressing to specify the
location of the source operand, ie we are effectively saying that
data should be taken from the location whose address is in register
a0, and then copied into register d2. Now if register a0 was being
used to hold the base address of the structure we would be able to
use instructions like that shown above to access the data held in
the first field of the structure. Ideally however what we’d like to be
able to do is have a structure base address in the specified register
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- and then be able to access any given field of that structure.
Fortunately we can, because the 68K chip kindly lets us specify a
displacement value as well, like this:

move.l im_Class(a0),d2

If a0 had been loaded with an IntuiMessage pointer then the above
instruction would retrieve data from the im_Class field of the
IntuiMessage and copy it to register d2.

We could just as easily have copied the data to some memory
locations. Moving data into memory locations labelled qualifier,
code and class, for example, could use instructions like these:

move.w im_Qualifier(a0), qualifier
move.w im_Code(a0), code
move.l im_Class(a0), class

The reasons that the Amiga programmer is able to write this style
of code are threefold. Firstly, there is the fact that the Amiga
system makes extensive use of C type structure definitions to
define its data structures. Secondly, there is the existence of the
STRUCTURE macro that enables the assembler programmer to work
with such structures in a relatively high-level, label orientated, way.
Lastly of course the 68000 chip makes the whole approach possible
by providing register indirect addressing with displacement.
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10:
Libraries
and the
Amiga

Libraries, for the Amiga
programmer, are the source of
much confusion simply
because the term is used in a
number of different contexts.
C compilers for instance will
have their own libraries of
standard functions, such as
printf(), and when a reference
to such a function is used
within a program it causes the
construction of an equivalent
unresolved reference in the
intermediate object code file.
At link time the linker must,
with some guidance from the
programmer, find the library
file that contains the function
and physically copy it into the
program being created. The
Amiga-specific library, called
amiga.lib, is another linker
library.

The AmigaDOS documentation
refers to linker libraries as
scanned libraries but on top of
this the AmigaDOS technical
documentation also refers to
library wunits, known as
resident libraries. A resident
library seems to be a set of
routines that are created and
linked apart from the program
which uses them - thus
forming a separately loadable
module. Little has been
published about these
facilities and they do not
appear to be used to any great
extent. At one time it was
rumoured that the facility
might even be dropped.

Lastly, the Amiga also uses
another type of library based
on a dynamic Exec run-time
library system. These also
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exist quite separately from the applications programs which use
them and are arranged in such a way that any number of programs
can use them simultaneously, or at least appear to do so within
Exec’s multi-tasking framework. It is these run-time libraries that
form the subject matter for the remainder of this chapter.

Unlike many less sophisticated machines where the location of a
system function is static you will rarely know, until the time you
come to use the library, where the functions are. Some libraries are
currently positioned in read only memory (ROM), others may be
available in RAM because they've been loaded during system
startup. A great many of these libraries however will remain on disk
until the first applications program indicates that it needs such a
library routine. Programs tell Exec that a library is needed by
attempting to open it using an OpenLibrary() function. When such a
call is made Exec does several things. It searches its lists of
libraries which are already open and available. If the library is
found then Exec simply returns the address of the library and
makes an internal note that another program is now using it. If the
library is not already open, Exec passes on the request to AmigaDOS
asking it to look for, and then load, the specified library. AmigaDOS
looks in the LIBS: logical device. If you boot from the Workbench
disk for instance then this logical device will have been assigned to
SYS:LIBS, ie the LIBS directory of the Workbench disk.

If AmigaDOS finds the library, it scatter loads it as per normal and
tells Exec where it has been placed. Exec then records the fact that
the library is now available by adding it to its list of available
libraries. Exec will never attempt to remove these library modules
whilst they are in use, but should the last user of a particular active
library indicate that they no longer need access to the routines,
which they do by executing a CloseLibrary() function, Exec’s library
manager may then remove the memory copy of the library and
release the associated memory so that it is free for other use.

As far as an applications program is concerned, most of these
operations are transparent and this is so even at the assembly
language programming level. All a program has to do to use a given
library is open it using the Exec OpenlLibrary() function, and then
use the library routines in much the same way that the
OpenlLibrary() function was itself used. The only thing which the
applications program must do is ensure that the OpenLibrary() call
was successful and it does this by checking that the address
returned is non-NULL. If the address returned has a zero value then
the system hasn’'t been able to open the library.

Why would a library fail to open? The system might not have been
able to find it on disk, the specified version might not be available,
the programmer might simply have spelt its name wrongly within
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the program, or the system might even be running out of memory
and have insufficient space to load a new library. The important
point is that you must not make any library function calls unless
you have got a valid base pointer or you will doubtless get a visit
from the Amiga guru!

If an applications program follows this protocol it never needs to
concern itself with where the routines are in memory, nor with the
fact that other programs may also be using the same routines. This
obviously makes for an extremely powerful and flexible library
system and there’s no doubt that much of the Amiga’s power has
stemmed directly from its run-time library arrangements. Here, to
start with, are the details of the Exec functions which handle the
opening and closing of a library:

Fuanction: OpenLibrary()

Description: Open a run-time library

Call Format: base_address=OpenlLibrary(library_name, version);

Registers: DO Al DO

Arguments: library_name - the address of a null terminated string version - a

library version number

Return Value: base address - the address of the base of the library. If the library
could not be opened a NULL value is returned.

Notes: User must not attempt to use any library functions if this function did not
succeed.

Function: CloseLibrary()

Description: Close a previously successfully opened library

Call Format: CloseLibrary(base_address);

Registers: Al

Arguments: base_address - the library base address

Return Value: None

Notes: User must not make library calls to a library after it has been closed.

Before examining some example library code fragments, it is
worthwhile looking beneath the surface of Exec’s run-time library
system to see what makes it tick. Once this material has been
understood the library code conventions will start to make a lot
more sense.

Run-Time Library Formats

An Exec library is basically just a collection of routines which are
accessed via a jump table. This is a table which provides offset
values (6 bytes long) which are used to calculate the address of the
function. The base address returned by the OpenLibrary() call is
actually the address of the start of a library structure and this data
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structure is sandwiched between the jump table and other library
specific data. The net result is that, once set up in memory, the
library looks like Figure 10.1.

f

(High Memory)
Library Specific Data
base address — Library Node Data Structure

jump to function 1 OPEN

jump to function 2 CLOSE

jump to function 3 EXPUNGE

jump to function 4 RESERVED

jump to function 5 1st user accessible
function

jump to function n (n-4)'th user
accessible function

(Low Memory)

'

Figure 10.1. Library structure in memory.

The first four function jump entries OPEN, CLOSE, EXPUNGE and
RESERVED must always be present. OPEN is an entry point called
when the library is opened and is the routine responsible for
incrementing the count of the number of users of a particular
library. CLOSE is a corresponding routine which decreases the user
count and, when the count gets to zero (ie the last library user
indicates that the library is no longer needed) it may instigate an
EXPUNGE operation which in more familiar terms simply means that
the library is prepared for removal. The RESERVED vector is
currently unused but is present as a gateway for system expansion.

The jump table entries are each six bytes long and so indirect
addressing can be used along with negative displacements to
identify any given function entry. These offsets, called library
vector offsets (LVOs), mean that the programmer can associate with
each library a set of LVOs like as shown in Figure 10.2.
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}

(High Memory)
Library Specific Data
base address — Library Node Structure

LVO - 6 OPEN

LVO -12 CLOSE

LVO -18 EXPUNGE

LVO -24 RESERVED

LvO -30 1st user function
LVO -36 2nd user function

(Low Memory)

'

Figure 10.2. Library offset vectors.

I've already mentioned that the first stage in using a library is to
open it by using the Exec OpenLibrary() function. You may now be
wondering how it is possible to open the Exec library in the first
place. The simple answer is that you do not need to because the
Exec library never has to be opened. Exec’s base address, known as
SysBase, is also permanently available. It is stored in memory
location 4 (known as AbsExecBase) during system start up and so
the Exec library is alive and kicking from the word go. AbsExecBase
incidentally is the only absolute memory location present in the
Amiga memory map (apart from things like the 68000 processor’s
exception vectors).

Opening a Library

By convention we place the base address of the library in register
a6, and then make an indirect subroutine call using the appropriate
library vector offset (LVO) value to specify the routine to be
executed. I've already mentioned that in the case of the Exec library
the base address is already available and so this can be loaded
directly from AbsExecBase.

The bare bones code for an OpenLibrary() Exec call might therefore
look like this:

move.l _AbsExecBase, a6 get the base address of Exec library
jsr _LVOOpenLibrary(a6) make the indirect subroutine call
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In practice you will probably want to preserve the original contents
of the a6 register and, as we've seen earlier, the easiest way of
doing this is to push the contents onto the stack beforehand:

move.l a6, -(sp) preserve original contents of a6
move.l _AbsExecBase, a6 get the base address of Exec library
jsr _LVOOpenLibrary(a6) make the indirect subroutine call
move.l (sp)+, a6 restore a6 to original value

You might incidentally be forgiven for thinking that any register
could be used to perform the indirect subroutine call. This is most
definitely not the case in general and there is a strict system
convention which says that a6 must always be loaded with the base
address. Why? It's because many library functions will call other
library functions in order to carry out their work. When this is done
the function doing the nested library call must also follow the
system conventions and provide a library base address and by
convention it will expect it to be present in register a6. Exceptions
to the a6 rule do exist but to be honest it is safer if you forget
about any special cases and regard the a6 rule as absolute!

You'll notice in the above code fragment that AbsExecBase and the
LVO value have underscore prefixes. This stems from an internal C
language convention and the underscore used in all assembly
ianguage forms has been introduced simply to provide
compatibility between C and assembler header files and code.

LVO offset values can be acquired in a number of ways. Firstly you
could link your code with amiga.lib (which contains all of the LVO
definitions).This would require that you tell your assembler that
you are expecting the LVO reference to be resolved at link time so,
somewhere near the beginning of your code you would need to
include the statement:

XREF _LVOOpenLibrary

XREF is an assembler pseudo-op which tells the assembler that a
value for the reference in question is going to be supplied at a later
stage, ie at link time. Note, if you forget to use an XREF declaration
the assembler will try to resolve the reference, fail, and then flag
the use of that reference as an error.

Another approach is to include a header file of the LVO definitions
in your program and the advantage here is that it is then possible
to avoid linking with amiga.lib. This can firstly save time and
secondly, if an include file containing the system start-up code is
used, you can (by asking the assembler to create directly executable
code) even eliminate the linking stage altogether.
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Alternatively you could look up the numerical LVO value using a
table of function offsets and use the values directly. You will find
an abbreviated set of tables in Appendix B and from the Exec
entries you'll see that the LVO value for the Exec OpenLibrary()
function is -552, ie -0228 hex. The assembly language programmer
is therefore quite at liberty to define the displacement in this
fashion:

move.l _AbsExecBase, a6 get the base address of Exec library
jsr -552(a6) make the indirect subroutine call

The trouble with this latter approach however is that you will lose
the inherent documentation that the LVO references provide. Let's
face it, the number -552 doesn't, unless you've memorised all of the
LVO tables, exactly tell you what library call is being made. The
reference _LVOOpenLibrary is much more meaningful and in
practice things can even be improved further.

The System LINKLIB Macro

The header file exec/libraries.i includes a piece of generalised
macro code, called LINKLIB, that performs the task of preserving a6,
loading a specified library pointer into a6, performing the indirect
subroutine call using a specified offset, and then reinstating the
original contents of a6 afterwards. The full details, which include
argument count checking, can be obtained from the header file
itself but in essence the job which is carried out is this:

move.l a6, -(sp) preserve original contents of
a6

move.l  <LibraryPointer>, a6 get the base address of
library

jsr <_LVORoutineName>(a6) make the indirect subroutine
call

move.l  (sp)+, a6 restore a6 to original value

The bottom line therefore is that by including the exec/libraries.i
file you can generate the appropriate library call code by writing:

LINKLIB _LVOOpenLibrary, AbsExecBase

This is the officially offered macro but many programmers, for
reasons of improved readability, prefer to use a modified macro
which adds the _LVO prefix automatically.

It's certainly not a good idea to modify the existing system macro
(such changes lead to much confusion if other programmers have
to read your code), but there's nothing to stop you creating an
extended macro which tags on the extra _LVO characters to the
function name. Here's one which will do the job.
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CALLSYS MACRO
LINKLIB _LVO\1,\2
ENDM

If you include this macro in your code you'll then be able to create
the appropriate library opening code using this simplified scheme:

CALLSYS OpenLibrary, AbsExecBase

To simplify things further it is equally possible to bury the library
base references inside the macros. Devpac users, for instance, are
provided with files that include both explicit LVO offsets and
library specific calling macros. In the case of the above example the
Devpac programmer, by including the Devpac specific exec_lib.i
file, can just write:

CALLEXEC OpenLibrary

Brief Library Details

You can find full details of the Amiga's extensive library routines
and listings of the include files in the Includes & Autodocs volume
of the Addison Wesley RKM manuals. Here are brief details of the
some of the most useful libraries together with their standard base
names:

diskfont.library library base name: DiskfontBase

This library contains routines for building and disposing of font
detail arrays and for loading fonts from disk.

dos.library library base name: DOSBase

This contains all of the AmigaDOS file and disk 1I/O and process
handling support routines.

exec.library library base name: SysBase

Routines for task control, list manipulation, /0 handling, messages
and ports, interrupt and memory management.

graphics.library library base name: GfxBase

This is the library that provides support for Views, Viewports,
RastPorts, BitMaps, GELS and all of the associated graphics and
animation primitives. Included in this library are routines for
controlling the Blitter and Copper chips.

intuition.library library base name: IntuitionBase

This library makes the complex WIMP graphics and WIMP control
programming a piece of cake. These Intuition routines are built
upon facilities provided by the graphics, layers and exec libraries
and provide support for screens, windows, menus, gadgets,
requesters, IDCMP communications ports and much more!
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layers.library library base name: LayersBase
This library is not directly used that often by most programmers. It
handles some quite difficult areas including the management of
window refreshing, buffering of obscured areas, manipulation of
damage lists, locking and unlocking of layers for handling
contention problems etc. The layers library is of course used
heavily by Intuition itself!

translator.library library base name: TransBase

Contains the Translate() function which can convert English text
into phonetic strings.

maths libraries

A number of maths libraries for single and double precision
operations are also available. Both Motorola fast (single precision)
format and IEEE double precision formats are supported. Here are
their names and library base names:

mathffp.library library base name: MathBase

mathieeedoubbas.library library base name:
MathleeeDoubBasBase

mathieeedoubtrans.library library base name:
MathleeeDoubTransBase

mathtrans.library library base name:
MathTransBase

A number of other libraries are also available and under Version 2.0
of the system software further libraries have been added. Few of
these are likely to be of much interest (or use) during your early
assembler programming days but, if you are curious and would like
comprehensive details, you should consult the official
documentation.

Putting the Pieces Together

Having dealt in some detail with the library arrangements and their
usage conventions it is time to look at some example code. Example
CH10-1 which follows uses the Exec OpenLibrary() function to open
the intuition library:
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; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

; a macro to extend LINKLIB and thus avoid the explicit
; use of the _LVO prefixes in the function names...
CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM

; EQUate definitions...
_AbsExecBase EQU 4

; main program code...
lea intuition_name,al 1library name start in a1
moveq #0,d0 any version will do

CALLSYS OpenLibrary, AbsExecBase macro (see text
for details)

move.l d0, IntuitionBase store returned value
beq EXIT test result for success
; if we reach here then the intuition library is open and
; its functions can be safely used!
; as it happens however all we shall do for this example
; is close the library like this...
move.l _IntuitionBase,al base needed in a1
CALLSYS CloselLibrary, _AbsExecBase
; and terminate the program...
EXIT clr.1 do
rts logical end of program

; variables and static data...
_IntuitionBase ds.1 1
intuition_name dc.b 'intuition.library',0
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Here are a few additional notes, sectioned off to correspond to the
main divisions within the program, to help you find your way
around the code.

Firstly, some includes:

exec_libraries.i needed because it contains the system
LINKLIB macro

exec_types.i has been included because it contains
definitions needed by exec_libraries.i

exec_lib.i contains LVO values for the Exec
functions

The CALLSYS macro was explained earlier in the text.

EQUate Definitions

The fixed location AbsExecBase, which holds the address of the
Exec library, has been explicitly stated in this example. Your
assembler may contain the value in one of its include files. The
value is also present in amiga.lib and if you are creating an object
code file that will subsequently be linked you should remove the
EQUate and replace it with a XREF _AbsExecBase declaration as
described later.

The Main Code

Loads the address of the first byte of the library name into register
al, and puts a zero value in register dO (to signify that we are not
bothered which library version we get). For details of the data
which needs to be loaded into the registers see the OpenLibrary()
function details provided earlier. The CALLSYS macro has been used
to generate the exec library use code. The returned base address, as
you will see from the OpenLibrary() function description, comes
back in register dO0. This value is stored in a variable called
_IntuitionBase and it is important to realise why we perform the
beq (branch on equal to zero) instruction after storing the returned
value. The system documentation makes a point of telling
programmers that they should not rely on the status flags as being
consistent with the returned value. In the current example this
means that even if dO returns with a zero value we cannot assume
that the processor's zero flag is set. Consequently the value in dO is
moved to the _IntuitionBase variable and since this move will
modify the zero flag to reflect the zero/non-zero state of the
returned value we are then able to make an effective state test.

To keep things simple this first example does not make use of the
library once it is open. It simply closes it again, using the
CloselLibrary() function, and then terminates. Notice that the
conditional branch beq instruction ensures that the CloseLibrary()
function is only ever called if the intuition library was successfully
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opened in the first place. Also, for simplicity, I've loaded and used
the exec library base directly from location 4 (_AbsExecBase) -
normally a program will load this library base into a variable called
_SysBase (the system's standard exec library base name).

Note also that register dO is cleared just before the program
terminates. This is an AmigaDOS convention to indicate that the
program completed successfully. Programs may use d0O (and many
system commands do this) to return an error code.

Lastly, space has been reserved for storing the intuition library
base and for holding the intuition library name. Following the
normal C-style string convention the text string has been NULL
terminated.

A Second Example

The following example is identical to the previous one except for
two small changes. Firstly, I've set up the _SysBase variable.
Secondly, once the intuition library is open it gets used! The
duplication is deliberate and, since most of the following code will
be familiar, all you'll need to worry about are three additional lines
of code. Here's the code:

; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

; @ macro to extend LINKLIB and thus avoid the explicit
; use of the _LVO prefixes in the function names...
CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM

; EQUate definitions...
_AbsExecBase EQU 4

_LvODisplayBeep EQU -96

; main program code...
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move.l _AbstxecBase,_SysBase store Exec library
base

lea intuition_name,a1 1library name start in ai

moveq #0,d0 any version will do

CALLSYS OpenLibrary, SysBase macro (see text for

details)

move.l  dO,_IntuitionBase store returned value

beq EXIT test result for success
; now let's make an intuition call to flash the screen...

move.l #0,a0 flash ALL screens

CALLSYS DisplayBeep,_IntuitionBase

; all done so we can now close the library as before and
quit...

move.l _IntuitionBase,al base needed in ai
CALLSYS CloselLibrary, SysBase

EXIT clr.1 do
rts logical end of program

; variables and static data.

_IntuitionBase ds.1 1
_SysBase ds.1 1
intuition_name dc.b 'intuition.library’',0

What changes have been made? Well, to start with I've defined the
_SysBase variable and loaded the exec library base into it:

move.l _AbsExecBase, SysBase store Exec library
base

and I've added these two lines of code:

move.1l #0,a0 flash ALL screens
CALLSYS DisplayBeep, IntuitionBase
The following description of the DisplayBeep() routine should make

it clear why a0 needs to be loaded with a zero value before calling
the function:
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Function: DisplayBeep()

Description: Cause a screen to flash

Call Format: DisplayBeep(screen_address);

Registers: a0

Arguments: screen_ address — address of an Intuition Screen

Return Value:  None

Notes: If a NULL screen address is supplied Intuition will flash all screens
including those of the Workbench and other programs!

You'll notice that the format for calling the intuition library
function is no different from the original Exec calls that were used
to open the intuition library itself. Admittedly we've got a different
library base and a different LVO reference, but the mechanism is
exactly the same as before!

One other change has been made - | have added the following
EQUate definition:

_LvODisplayBeep EQU -96

By now you probably know the reason well enough but I'll work
through the explanation once more for good measure. To use an
intuition library, such as DisplayBeep(), we need to know the LVO
value for the function. In this particular case | simply looked up the
numerical value and created my own definition. This is a common
solution if you are using an assembler which can create directly
executable, as opposed to linkable, code.

Devpac, for instance, which can produce both executable and
linkable code, provides include files which contain these values. In
fact if the Devpac user included the intuition/intuition_lib.i file
(which contains the _LVODisplayBeep offset) they would not need
to add the EQUate line shown above to the example program.

The XREF Orientated Pathway

At the risk of driving many of you nuts, I'm going to re-use the
second example to show the changes which allow the
_AbsExecBase,_LVOOpenLibrary, _LVODisplayBeep, and
_LVOCloseLibrary references to be resolved at link time rather than
at assembly time.

The conventional way for the assembler programmer to indicate
that the above references are external would be to use XREF
statements like this:

XREF _AbsExecBase

XREF _LvOOpenLibrary

XREF _LvODisplayBeep

XREF _LVOCloseLibrary




Libraries and the Amiga

Now this is all very well but having removed the _LVO prefixes from
the bulk of the previous code it would be a pity to have to
reintroduce them just to provide suitable XREF statements. There is
in fact a system macro called EXTERN_LIB (defined in the
exec/types.i file) that will add the _LVO suffix automatically. This
allows us to write the last three _LVO references as:

EXTERN_LIB OpenLibrary
EXTERN_LIB DisplayBeep
EXTERN_LIB CloselLibrary

The following program uses these EXTERN_LIB macro statements
(along with the single XREF _AbsExecBase declaration) to tell the
assembler which values will not be known until the resultant object
code has been linked with other files. Notice incidentally that
inclusion of the exec_lib.i is no longer necessary because the Exec
offset values are themselves also available from amiga.lib:

*
m
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3

©
=
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o
X
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o

]

w
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; some system include files...
include exec/types.i
include exec/libraries.i
; a macro to extend LINKLIB and thus avoid the explicit
; use of the _LVO prefixes in the function names...
CALLSYS MACRO
LINKLIB _LVO\1,\2
ENDM
; declare external references...
XREF _AbsExecBase
EXTERN_LIB OpenLibrary

EXTERN_LIB DisplayBeep

167
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EXTERN_LIB CloseLibrary

; main program code.

move.l _AbsExecBase,_SysBase store Exec library
base

lea intuition_pame,al 1library name start in a1

moveq #0,d0 any version will do

CALLSYS OpenLibrary,_ SysBase macro (see text for
details)

move.l do,_IntuitionBase store returned value
beq EXIT test result for success
; now let's make an intuition call to flash the screen...

move.l #0,a0 flash ALL screens
CALLSYS DisplayBeep, IntuitionBase

; all done so we can now close the library as before and
quit...

move.l _IntuitionBase,al base needed in at
CALLSYS CloselLibrary, SysBase

EXIT clr.1 do
rts logical end of program

; variables and static data...
_IntuitionBase ds.1 1
_SysBase ds.1 1
intuition_name dc.b ‘'intuition.library',0



11:

An Overview
of Some
Important
Rules

With some knowledge of both
68000 assembler program-
ming and the overall layout of
the Amiga programming
environment under our belt
we are almost in a position to
do some real Amiga program-
ming. Before doing so
however there are still a few
loose ends to be tied up as far
as conventions and general
program frameworks are
concerned.

As we’ve already seen, the
Amiga is a multi-tasking
machine and because of this
there is never any guarantee
that a system call will be
successful. A memory
allocation call could fail if
some other application has
previously grabbed all
available RAM. Similarly a
request for use of the serial
device could fail (some other
program might previously
have been granted exclusive
access), or some important
fonts or libraries might be
missing from the system
directories.

Because of these eventualities
there are three golden rules
which Amiga programmers
must learn to obey. These
rules have already been
mentioned but, since they are
important, they’re worth
restating before we do any
real Amiga programming at
all.
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Always make sure you get what you ask for!

Always provide a robust error path so that if the system cannot
provide the required facilities your program closes down in a
proper fashion.

Always give back to the system any memory, device, or other
facility which you explicitly acquire!

A great many other rules/guidelines exist which Amiga
programmers should obey. Not all of these will make sense at the
moment but they've been gathered together in this chapter for easy
reference.

Never make assumptions about memory, system configurations
(eg the presence of particular drives or device names), or the
contents of system structures which are designated as private.
Do not for instance assume that particular library bases or
system structures will always exist at a particular location.
Above all never call ROM routines directly.

If you need to access a system structure that may be shared
between other tasks, remember to lock out other tasks, eg by
forbidding multi-tasking. This will prevent other tasks
attempting to change the structure whilst you are in the middle
of looking at it.

The Amiga’s operating system does not monitor the size of a
program’s stack. Many compilers however allow stack checking
code to be added to the compiled application code and the
assembler programmer can make similar code additions.
Although such checks slow the program down, they are useful
particularly during the development of recursive routines which
may become deeply nested.

Remember that any data which is to be accessed by the Amiga’s
custom chips (bitplanes, image data, sound samples and so on)
must be placed in chip memory.

Do not use poll based loops to wait for external events. The
system has methods for allowing a task to sleep by Wait()ing on
particular signal bits - use them. Similarly you should not use
software delay loops for creating timing delays.

Do not disable either interrupts or multi-tasking for long periods
of time.

Do not access the hardware directly.

Do not assume that system flags and system options are limited
to values currently available — current arrangements may change.
If for example you look for a PAL display and don’t find one you
must not assume the display is NTSC (even though it is at the
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present time). You must explicitly check for both PAL and NTSC
displays and then, to be really safe, provide an error handling
shutdown path which recognises the existence of any unknown
display type.

e Do not tie up system resources unnecessarily. For example, if
your program does not need constant use of a printer then only
open the printer device when the program actually needs it and
close it as soon as possible. That way other programs will also be
able to use the printer device.

e Get into the habit of checking for memory loss during program
development. The amount of free memory available after your
program has run should be exactly the same as it was to start
with. If it isn’t then some debugging is clearly needed.

e All non-byte fields must be word aligned

e All address pointers must be 32 bits. Do not use the upper 8 bits
for data.

e Do not use self-modifying code

e Custom chips’ registers are read only or write only. Do not write
to read only registers and do not read from write-only registers.

There are also a few guidelines aimed specifically at the assembly
language programmer.

e System library functions must be called with register a6 holding
the library or device base. Libraries and devices, as mentioned in
the last chapter, will assume a6 is valid at the time of such a
function call.

e Registers dO, d1, a0 and al are scratch registers and their
contents must be considered lost after a system library call. The
contents of all other registers can be assumed to be preserved.

e System functions that return a value may not necessarily affect
the processor’s condition codes.

* Do not use a clr instruction on hardware registers which are
triggered by access because it can cause the hardware register to
be triggered twice. Instead use move(.size)#0, location instead.

* Do not use the move sr instruction. If you wish to get a copy of
the processor condition codes use the Exec library’s GetCC()
function.

e Do not use the tas instruction on the Amiga. Direct Memory
Access (DMA) can conflict with this specialised instruction.
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Many of these rules will not overly concern you during your early
programming days but it is worth pointing out that in days gone by
many Amiga programmers have come to grief because they ignored
the rules altogether. The best idea, at least in my view, is to always
make the maximum effort to abide by the system conventions.
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Some
Introductory
Shell/CLI
Programs

This chapter aims to provide
some simple, but runable,
Amiga assembly language
programs which will tie
together some of the issues
that I've been talking about.
Before doing this however
there are a number of
environment issues to be
discussed, starting first and
foremost with the differences
between CLI/Shell started
programs and Workbench
started programs.

Normal programs on the
Amiga run as AmigaDOS
processes. These, in terms of
their multi-tasking capabilities
are based on an Exec task but
processes are more powerful
(and more generally useful)
because they have additional
DOS capabilities. When you
start a program from a
Shell/CLI window you do it by
typing its name followed by
any parameters (arguments)
that are needed. The
AmigaDOS CLI/Shell process
will, on seeing this, allocate
some memory for a stack for
your program, store a
program stack size on the
program stack itself and then
push a return address on this
stack. The AmigaDOS
CLI/Shell, which as mentioned
is running as a process, stores
the CLI/Shell command line on
its own stack and then
provides your program with
the address of the first
character of any arguments
you supplied on the command
line in a0 and the argument
character count in dO.
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One important point to remember is that the CLI/Shell does not
create a new process for your program; it transfers control to your
program by jumping to your program's code and so your program
runs as part of the CLI/Shell process. Because of this your program
can inherit a certain amount of run-time information and, as well as
the command line arguments discussed above, it can also find out
where the CLI/Shell is getting its input from and where its output is
going. These I/0 details represent addresses and are conventionally
known as the CLI/Shell input and output handles.

When a program runs from the Workbench AmigaDOS starts it as a
completely separate process and in this case there will be no
command line and no CLI/Shell input-output handles available, so
Workbench started programs need to set up their own 1/0 facilities
and have to carry out some rather awkward message-orientated
Workbench operations.

The job of creating generally useful program start-up code is quite
complex. It includes deciding whether a program has started from
the Workbench or a CLI/Shell, possibly parsing (separating)
CLI/Shell arguments so that they can be provided to languages like
C in an easy to use fashion, possibly opening up the DOS library
and setting up standard I/0 handles and so forth. Commodore
provides some standard code, called the start-up code, which takes
care of many of these interfacing details and in fact nowadays a
variety of start-up modules are available and, depending on what
your program is doing, you are free to choose according to your
needs. Almost all high-level language compilers and 68000
assembler packages will offer some form of standard start-up code
for you to use. It is normally based on the Commodore
recommendations and, if it has been written to be used with a high-
level language like C, the chances are that it will expect the start
location of your program code to be labelled as _main.

The code may be supplied as a piece of source code that can be
included at the beginning of your program - the assembler
therefore generates, and includes, the appropriate start-up code as
it assembles your program. This is obviously useful if your
assembler allows the creation of directly executable programs.
Start-up code may on the other hand be supplied as a separately
compiled module and in this case you have to ask the assembler to
create linkable (as opposed to executable) code and then use the
linker program to add the start-up code to the front of your
program. This is not a difficult job and I'll be discussing some
linker-orientated issues later in this chapter.
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Collecting Default 1/0 Handles

Despite the fact that most start-up code will, for CLI/Shell
programs, open the DOS library and set up the standard 1/0
handles (known conventionally as _stdin and _stdout) it is useful to
see exactly what has to be done. It’s not a difficult job and basically
all a program needs to do is open the DOS library, and then make
calls to two DOS functions known as Input() and Output(). Opening
the DOS library is no different to opening any other run-time library
and so the code required will follow the general outline of that
indicated in Chapter 10. Here are some brief details of the two DOS
calls that are needed once the library is open:

Fanction: Input()

Description: Identify a program’s initial input file handle

Call Format; file_handle = Input()

Registers: do

Arguments: None

Return Value: file_handle - the programs initial input file handle.

Fanction: Output()

Description: Identify a program's initial output file handle
Call Format: file _handle = Output()

Registers: do

Arguments: None

Return Value: file_handle - the programs initial output file handle.

The library opening code, which should already be familiar, takes
this form:

move.l _AbsExecBase,_SysBase set up SysBase variable

lea dos_name, a1 library name start in at
moveq #0,dO any version will do

CALLSYS  OpenLibrary, SysBase macro (see text for details)
move.l do,_DOSBase store returned value

In a real program we would of course need to check that the
returned library base was valid and the easiest way to do that is to
check the zero flag after the library base (which comes back in
register dO) has been moved to the _DOSBase variable. If the library
open was successful we can then use Input() and Output() to
identify the 1/0 handles. For example, we can collect the output
handle like this:
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CALLSYS Output,_DOSBase get default output handle
move.l do,_stdout store output handle

Again in a complete program it is necessary to check the returned
dO0 value.

Outputting Text Messages

Writing text messages back at the CLI/Shell is obviously a useful
thing for a program to be able to do. Luckily it is an easy task
because once a file handle is available there is a general DOS
function, called Write(), which can be used to do the job.

Function: Write()
Description: Write data to a file
Call Format: length_written = Write(file, buffer_p, data_length)

Registers: DO Dl D2 D3
Arguments: file — file handle
buffer p - pointer to buffer holding the data
data_length - length of the data
Return Value: length_written — number of bytes actually written
Notes: Alength_written value of -1 will indicate an error.

The above Write() function is not incidentally just for writing text
messages. It is a general function used to write bytes of data to any
DOS file. Having said that, if you use _stdout as the file handle and
the user hasn’t redirected the output using DOS’s > operator, then
DOS will indeed write the data back at the CLI/Shell window.

You'll see from the above description of Write() that the function
needs to know how much data is being written. This means that to
use Write() to send text messages to the CLI/Shell window you'll
need to know how long each text string is. Static program text is
usually set up using define byte (dc.b) assembler directives like
this:

message dc.b 'test text’

One way to work out the number of characters is to actually count
them and in the above example this is easy enough to do. With
larger pieces of text this approach obviously becomes tedious and
error prone and there is in fact a far better way of doing the job -
you place an additional label at the end of the text and then use the
EQUate directive to set it to a value based on the current assembler
location counter value minus the start of the original string, like
this:
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message
message_SIZEOF

dc.b 'test text'
EQU *-message

The result is that the assembler automatically sets the second label
to the size of the preceding string. | adopt a convention whereby
the sizes of all message strings are represented by a label formed
by taking the original string label and adding _SIZEOF to it. Why?
It’s because it is then possible to create a macro that, given the
string label, can form the size label automatically. Since Write()
uses registers d1-d3 it is useful to preserve those registers on the
stack before loading them with the data needed by the DOS call.
The following macro does this, sets up d1-d3 as indicated earlier
(note how my _SIZEOF convention is used to put a string size in d0),
makes the DOS call, and then finally reinstates the contents of
registers d1-d3:

WRITEDOS MACRO

movem.1l d1-d3,-(sp) preserve registers d1-d3
move.l \2,d1 DOS output file handle
move.l #\1,d2 start of message

move.l #\1_SIZEOF,d3 size of message

CALLSYS Write, DOSBase DOS call to write message
movem.l (sp)+,d1-d3 restore registers di1-d3
ENDM

With this macro available the assembler programmer can create the
necessary code by writing this type of statement:

WRITEDOS <text_label>,<dos_handle>

In the above text message example the line needed is:
WRITEDOS message, _stdout

which gets expanded to this type of code:

movem.1l d1-d3,-(sp) preserve registers d1-d3
move.l _stdout,d1 DOS output file handle
move.l #message,d2 start of message

move.l #message_SIZEOF,d3 size of message
CALLSYS Write, DOSBase DOS call to write message
movem.l (sp)+,d1-d3 restore registers di1-d3

Obviously the CALLSYS macro gets expanded in a similar fashion
with CALLSYS itself causing the _LVO prefix to be added to the
Write label and generating a further reference to the system LINKLIB
macro.
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movem.l d1-d3,-(sp) preserve registers di1-d3
move.l _stdout,d1 DOS output file handle
move.l #message,d2 start of message

move.l #message_SIZEOF,d3 size of message
LINKLIB _LvOwrite,_DOSBase DOS call to write message
movem.l (sp)+,d1-d3 restore registers d1-d3

LINKLIB is of course also expanded so the final code produced by
the assembler looks like this:

movem.l d1-d3,-(sp) preserve registers di1-d3
move.l _stdout,d1 DOS output file handle
move.l #message,d2 start of message

move.l #message_SIZEOF,d3 size of message

move.l a6, -(sp) preserve contents of a6
move.l _DOSBase, a6 base address of library
jsr _LVOwrite(a6) indirect subroutine call
move.l (sp)+,a6 restore a6

movem.l (sp)+,d1-d3 restore registers di1-d3

Be quite clear of the advantages of this macro orientated approach.
Three generally useful macros have allowed us to create all of the
above code by simply writing:

WRITEDOS message, _stdout

Already the macros are doing a good job of hiding the somewhat
messy details of the function calls. In effect they are allowing us to
write 68000 assembler code at a much higher level than would
otherwise have been possible!

If we take our macro definitions, define space for some variables,
and include the appropriate header files it’s possible to create a
short program which puts all of the ideas we’'ve been talking about
together. The following example opens the DOS library, sets up
_stdout, and then prints a message on the screen:
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; some system include files...

include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

CALLSYS MACRO

.
3

LINKLIB _LVO\1,\2
ENDM
CALLSYS macro is used to extend LINKLIB and thus avoid

; the explicit use of the _LVO prefixes in the function

WRITEDOS MACRO

movem .1l d1-d3,-(sp) preserve registers d1-d3

move.l \2,d1 DOS output file handle

move.l #\1,d2 start of message

move.l #\1_SIZEOF,d3 size of message

CALLSYS Write,_DOSBase DOS call to write
message

movem .1l (sp)+,d1-d3 restore registers d1-d3

ENDM

WRITEDOS is used to Write() DOS text messages and
control character streams. The macro expects the user
to supply a text label followed by a valid DOS output
handle.
Usage: WRITEDOS <text label>,<dos_handle>
Example: WRITEDOS message, _stdout
Within the program each message X must have a
corresponding size EQUate, X_SIZEOF, containing the
size of the message. An easy way to set this up is to
define the size label immediately after defining the
message itself and use the assembler's location counter
to do the length calculation, like this...

message dc.b 'test text'
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H message_SIZEOF EQU *-message
; EQUate definitions...

_AbsExecBase EQU 4

LF EQU 10

sy main program code...

move.l _AbsExecBase,_SysBase set up SysBase
variable

lea dos_name,al library name start in ai

moveq #0,d0 any version will do

CALLSYS OpenLibrary,_ SysBase macro (see text for
details)

move.l dO, DOSBase store returned value

beq EXIT test result for success

; if we reach here then the DOS library is open and its
; functions can be safely used!
CALLSYS Output,_DOSBase get default output handle

move.l  dO, stdout store output handle
beq CLOSELIB
s have obtained valid output handle so message can be
; written...

WRITEDOS message, _stdout get DOS to write message
; all done so now we can close DOS library...
CLOSELIB move.1l _DOSBase,at base needed in ai
CALLSYS CloselLibrary, _SysBase
; and terminate the program...
EXIT clr.l do
rts logical end of program

; variables and static data...

_stdout ds.1l 1

_SysBase ds.1 1

_DOSBase ds.1 1

dos_name DOSNAME

message dc.b 'this is just my line of test text',LF
message_SIZEOF EQU *-message
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The format of the library calls should be familiar from earlier
chapters and you should note that not only have any calls that
could fail been checked but that the program takes the appropriate
actions if things go wrong. If, for example, the Output() function
fails then the program branches directly to the section which closes
the DOS library. In other words it does not attempt to output a
message.

You'll notice that space for the programs variables,
_stdout,_SysBase etc, have been created using the assembler’s
define storage (ds.I) directives and on seeing the directive:

_stdout ds.1 1

the assembler will set aside four bytes of uninitialised memory.
When long word (or word) values are specified the assembler will
ensure that the location is word-aligned (to prevent addressing
errors when the program is run). What happens at the assembly
stage of course is that, on seeing such a directive, the assembler
simple adds 4 (or 5 if the location needs padding) to its location
counter.

You may, incidentally, be wondering why a clr.l dO instruction
occurs just before the end of the program. It’'s because although
Amiga programs terminate via a simple return from subroutine (rts)
instruction AmigaDOS, by convention, expects to see either a zero
or an AmigaDOS error code in register d0. Nothing serious will
happen of you don’t do this but given the system rules it is best to
stick to them!.

The next program extends the ideas we’ve been discussing to the
printing of several text strings:

; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

; see text and notes with earlier programs
CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM
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; see text and notes with earlier programs

WRITEDOS MACRO

movem.l d1-d3,-(sp) preserve registers d1-d3

move.l \2,d1 DOS output file handle

move.l #\1,d2 start of message

move.l #\1_SIZEOF,d3 size of message

CALLSYS Write,_DOSBase DOS call to write
message

movem .1  (sp)+,d1-d3 restore registers di1-d3

ENDM

; EQUate definitions...

_AbsExecBase
LF

EQU 4
EQU 10

; main program code...

move.l

lea
moveq
CALLSYS

move.l
beq
; DOS library
; used...
CALLSYS
move.l
beq

_AbskExecBase, SysBase set up SysBase

variable
dos_name,at library name start in ai
#0,d0 any version will do
OpenLibrary, SysBase macro (see text for

details)
do,_DOSBase store returned value
EXIT test result for success

is open and its functions can be safely

Output, DOSBase get default output handle
do,_stdout store output handle
CLOSELIB

; have obtained a valid output handle so messages can be

; written...
WRITEDOS
WRITEDOS
WRITEDOS
WRITEDOS

; all done so

messagel, stdout write messages
message2, stdout

message3, _stdout

messaged4, stdout

now we can close DOS library...

CLOSELIB move.l _DoSBase, a1 base needed in a1
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CALLSYS CloseLibrary, _SysBase
; and terminate the program...
EXIT clr.1 do
rts logical end of program

; variables and static data...

_stdout ds.1 1

_SysBase ds.1 1

_DOSBase ds.1 1

dos_name DOSNAME

message1 dc.b 'Once you have seen how easy it is to
write',LF

messagei1_SIZEOF EQU *-message1

message2 dc.b ‘one line of text using the WRITEDOS

macro...',LF
message2_SIZEOF EQU *-message2

message3 dc.b 'you should be able to write any
number of',LF

message3_SIZEOF EQU *-message3
messaged dc.b ‘similar programs yourself!', LF
messaged4_SIZEOF EQU *-messaged

Getting Data From The CLI/Shell Command Line

| mentioned earlier that when a CLI/Shell program starts, the
registers a0 and dO contain the start address of the command line
and its length. The following example starts by collecting this info
and storing it in two variables (which I've called cli_args_p and
cli_args_size). Having done that, it continues as per the earlier
example by printing some text using DOS’s Write() function. The
difference however in this program is that it is not a static text
string that is being printed — we print the arguments supplied on
the command line when the program was started. The main
purpose of the example is to illustrate how user supplied
arguments can be collected but, by way of a simple loop
illustration, I've actually arranged to print the command line as
many times as there are characters, removing the last character
each time a line is printed. If, for example, the user types
ThislsMyTest the program will respond by displaying:
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ThisIsMyTest
ThisIsMyTes
ThisIsMyTe
ThisIsMyT
ThisIsMy
ThisIsM
ThisIs
ThisI

This

Thi

Th

T

Here’s the code that shows how it is done:

; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

; see text and notes with earlier programs
CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM

; see text and notes with earlier programs
WRITEDOS MACRO

movem.l d1-d3,-(sp) preserve registers d1-d3

move.1l \2,d1 DOS output file handle

move.l  #\1,d2 start of message

move.l  #\1_SIZEOF,d3 size of message

CALLSYS Write, DOSBase DOS <call to write
message

movem.l (sp)+,d1-d3 restore registers d1-d3

ENDM
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; EQUate definitions...

EQU 4
EQU 10

; main program code...

PR

move.l _AbsExecBase, SysBase set up SysBase
variable

move.l a0,cli_args_p save DOS supplied
CLI pointer

move.l do,cli_args_size and command
argument length

lea dos_name,at library name start in a1

moveq #0,d0 any version will do

CALLSYS OpenLibrary,_SysBase

move.l d0o, DOSBase store library base

beq EXIT check result

DOS library

used!
CALLSYS
move.l
beq

is open and its functions can be safely

Output, DOSBase get default output handle
do,_stdout store output handle
CLOSELIB

valid output handle is available so do the argument

print...
move.l
subq.l
beq

INT move.l
move.1l

CALLSYS

subq.l

cli_args_size,d3 orig argument size

#1,d3 ignore terminal linefeed

CLOSELIB no arguments provided

_stdout,d1 DOS output file handle

cli_args_p,d2 needed since DOS
destroys d2

Write,_DOSBase print d3 characters of
argument

WRITEDOS linefeed, _stdout print a linefeed
#1,d3 decrease character count
PRINT keep going if d3 is non-zero

bne

WRITEDOS linefeed, _stdout print linefeed to finish
; all done so now we can close DOS library...
CLOSELIB move.l _DoSBase, a1 base needed in at
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CALLSYS CloseLibrary, _SysBase
; and terminate the program...
EXIT clr.1 do
rts logical end of program

; variables and static data...

_stdout ds.l 1
_SysBase ds.1 1
_DoOSBase ds.1l 1
cli_args_p ds.1 1
cli_args_size ds.1 1
dos_name DOSNAME

linefeed dc.b LF

linefeed_SIZEOF EQU *-linefeed

Note: Because the WRITEDOS macro is not designed to handle
messages whose lengths are not defined by a _SIZEOF label, the DOS
Write() function call had to be set up manually!

Using The Amiga.lib Library Print Function

One alternative to using the DOS based Write() function directly can
be found in the amiga.lib linker library. There is a high-level
routine called printf(), styled on the C function of the same name
(see Appendix A for details) which allows you to both print and
specify the format of text and numbers (decimal and hexadecimal).

Linker libraries, as explained earlier, are a collection of routines
and data that can be used by your program. When using routines
which are external to the source code that you are actually writing
it is necessary to tell the assembler that some of the routine
references that it will find in the program will not actually be found
in the source itself, but the reference will be resolved (ie the
routine in question will be found) later, namely at the time the
program is linked.

To do this we use the assembler’s XREF pseudo-op. So to declare the
print() function, which to the assembler programmer is the
reference to a routine called _printf, we use this statement:

XREF _printf
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Having created a program with such a definition we ask the
assembler to create linkable code. By convention the assembler will
usually create a file with a ‘.0’ filename extension to signify an
object code module. Once the object code module is available it can
be linked.

If the source file is called ExampleCH12-4.s then the assembler will
create an object code file called ExampleCH12-4.0, and to link this
with the amiga.lib library you would use this sort of command line:

blink ExampleCH12-4.0 to ExampleCH12-4 library amiga.lib

It may be necessary, depending on your assembler/tool
environment to add filepaths to tell blink where the files and
libraries are. If, for example, your program files are in Ram and the
amiga.lib library is in a df0: directory called LIB then you would use
a blink command line which looked like this:

blink ram:ExampleCH12-4.0 to ram:ExampleCH12-4 library
df0:LIB/amiga.lib

Either way the result, at the end of the day, is that blink will take
the specified object code file, add the necessary library code, and
produce a runable (executable) program.

As far as the source code is concerned however there is a little
more to using the printf() routine than just telling the linker where
it is. The amiga.lib printf() function has its own special needs and
amongst them comes access to a valid stdout handle - in other
words printf() will need to know where the output should be sent.
In fact, unless the linker can see the _stdout label in your program,
the link operation will fail.

This is where another assembler pseudo-op, called XDEF, comes in
handy. XDEF ensures that labels are visible to the linker and to
make _stdout available in this fashion we’d write:

XDEF _stdout

Many of the routines present in amiga.lib expect to have access to
library bases and so these also frequently need to be XDEF's. To
make the DOS library base, known conventionally as _DOSBase,
externally visible, we would therefore use this statement:

XDEF _DOSBase
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C Function Call Conventions

Unfortunately there is a big difference between the Amiga’s run-
time libraries, such as the exec and DOS libraries, and the amiga.lib
linker library as far as both use and the way that the library
routines expect to be given their data. The parameter passing
conventions of the run-time library routines, as we have already
seen, are register based - the data required for the routines are
placed into appropriate 68000 registers prior to using the function.

The amiga.lib routines have been written to use a C style
convention whereby any data that must be passed to the function is
passed on the stack. For obvious reasons this approach is called
stack-based parameter passing and the snag, as far as the
newcomer to assembler programming is concerned, is that it is
necessary to know how to do this before the routines can be used.

Luckily the basic outline is reasonably simple. Place any required
parameters onto the 68000’s stack, perform a normal jsr (or
perhaps bsr) type subroutine call, then adjust the stack pointer so
that it points to the position specified before the parameters were
pushed onto it. In effect this latter adjustment serves the same
purpose as pulling the parameters off the stack, but the single
numerical adjustment is quicker.

From C, the printf() function takes this form:
printf(format_string, argl, arg2,.... argN);

and (as you'll see in Appendix A) text strings are specified by
pointers representing the addresses of their first bytes. To print a
single text string you would therefore use this type of call:

printf(format_string, text_string);

The format string can incidentally be quite complex but for our
immediate purposes all you need to be aware of is the fact that the
format string for printing a single text string followed by a line-feed
is:

dc.b '%s',LF, NULL

This tells the printf() function to expect a string pointer. The
terminal NULL incidentally is, as mentioned before, a C-style way of
indicating the end of the string.

C function call conventions result in parameters being pushed onto
the stack in a right to left order. For the printf() function call
illustrated above, this means that the part of the stack that we are
interested in ends up looking like Figure 12.1.
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}

top of memory

text_string

format_string (remember 68000 stacks
SP —» grow downwards)

bottom of memory

\

Figure 12.1. The Stack for the print(f) function call.

This situation is exactly what our program must provide before we
can use the amiga.lib printf() function. To achieve it we therefore
need to push firstly the address of the text string, and then
secondly the address of the format string, onto the stack. There is
in fact a special instruction for pushing the address of a specified
operand onto the stack - it is called a push effective address (pea)
instruction and for pushing the address of a labelled memory
location it can be used like this:

pea text_string
pea format_string

The pea instruction can be used with any 68000 addressing mode
and the result is always that the address of the specified operand
(not the operand itself) will be pushed onto the stack. The complete
amiga.lib C style printf() function call therefore follows this type of
use pattern:

pea text_string push text string address
pea format_string push format string address
jsr _printf make the amiga.lib call
addq.l #8,sp adjust stack

Notice that, as mentioned earlier, it is not necessary to pull the text
and format string pointers from the stack - instead we use a addq.l
#8 instruction to add 8 (the numerical equivalent of two long
words) to the stack pointer. This effectively adjusts the stack
pointer register so that it has the same value as it had before we
pushed our parameters onto the stack.
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Anyway, that’s enough of such things for the moment. Now that
these preliminary explanations are out of the way here is some
runable example code that will illustrate the ideas I've been
discussing:

* Example CH12-4.s
e e e i e e N S
; some system include files...

include exec/types.i

include exec/libraries.i

include exec/exec_lib.i

; external reference declarations...
XREF _printf
XDEF _stdout
XDEF _DOSBase

CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM
; CALLSYS macro is used to extend LINKLIB and thus avoid
; the explicit use of the LVO prefixes in the function
; names...

; EQUate definitions...

_AbsExecBase EQU 4
LF EQU 10
NULL EQU 0

5 main program code...

move.l _AbsExecBase,_SysBase set up SysBase
‘ variable
| lea dos_name, a1 library name start in ai
} moveq #0,d0 any version will do
‘ CALLSYS OpenLibrary, SysBase macro (see text for
details)
move.l dO,_DOSBase store returned value
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beq EXIT test result for success
; if we reach here then the DOS library is open and its
; functions can be safely used!
CALLSYS Output, DOSBase get default output handle
move.l dO,_stdout store output handle
beqg CLOSELIB
; Have obtained valid output handle so message can be
; written. This time because we are using the amiga.lib
y printf() routine, things must be done in C style so not
; only must parameters be passed on the stack but ALL
; strings must be NULL terminated...

pea message push message address
pea format_string push format string
address
jsr _printf use amiga.lib printf()
addq.l  #8,sp shortcut way to adjust
stack
; all done so now we can close DOS library...
CLOSELIB move.l _DOSBase, a1 base needed in a1

CALLSYS CloseLibrary, _SysBase
; and terminate the program...
EXIT clr.1 do
rts logical end of program

; variables and static data...

_stdout ds.1 1

_SysBase ds.1l 1

_DOSBase ds.1 1

dos_name DOSNAME

message dc.b 'my line of printf() test text',NULL

format_string dc.b '%s',LF,NULL

printf() Debugging

The amiga.lib library's printf() routine is often useful as a
debugging aid because it can be used to dump the contents of
specified registers back at the CLI/Shell window. The following
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program, ExampleCH12-5.s, is almost identical to the previous one
except that it uses printf() to print the contents of a numerical
variable - namely, the contents of _SysBase, ie the base address of
the exec library:

; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i

; external reference declarations...
XREF _printf
XDEF _stdout
XDEF _DOSBase

CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM
5 CALLSYS macro is used to extend LINKLIB and thus avoid
; the explicit use of the _LVO prefixes in the function
; names...

; EQUate definitions...

_AbsExecBase EQU 4
LF EQU 10
NULL EQU 0

; main program code...

move.l _AbsExecBase,_SysBase set up SysBase
variable
lea dos_name,al library name start in ail
moveq #0,d0 any version will do
CALLSYS OpenLibrary, SysBase macro (see text for
details)

move.l dO, DOSBase store returned value
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beq EXIT test result for success
; if we reach here then the DOS library is open and its
; functions can be safely used!

CALLSYS Output,_DOSBase get default output
handle

move.l dO,_stdout store output handle
beq CLOSELIB
; Have obtained valid output handle so message can be
; written. This time the amiga.lib printf() routine is
; being used to print the contents of the _SysBase
; variable...

move.l _SysBase,-(sp) push library base
pea format_string push format string
address
jsr _printf use amiga.lib printf()
addq.1 #8,sp shortcut way to adjust stack
; all done so now we can close DOS library...
CLOSELIB move.l _DOSBase, a1 base needed in ai

CALLSYS CloseLibrary, _SysBase
; and terminate the program...
EXIT clr.1 do
rts logical end of program

; variables and static data...

_stdout ds.1 1
_SysBase ds.1 1
_DOSBase ds.1 1
dos_name DOSNAME

format_string dc.b '%lx hex',LF,NULL

Using Multiple Run-Time Libraries

Depending on what a program needs to do it may open any number
of libraries simultaneously. When lots of these system orientated
operations are being done it is however necessary to be careful
about the order in which particular operations are done, and in fact
whether certain things are done at all' As far as opening/closing
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and other system allocate/deallocate issues are concerned, the
safest rule of thumb is to always arrange to close things down in
the reverse order to that used during program start-up.

Even with small programs, such as those we are discussing in this
chapter, some care is needed. The next example deals with the
opening of two libraries and I've used a number of test and
conditional branch instructions to create the type of control
structure in Figure 12.2.

TRY TO OPEN DOS LIBRARY
IF DOS OPEN NOT OK... branch to EXIT
ELSE TRY TO GET stdout HANDLE
IF stdout NOT OK... branch to CLOSEDOS
ELSE TRY TO OPEN MATHS LIBRARY
IF MATHS LIBRARY OPEN NOT OK... branch to CLOSEDOS —»
ELSE [ HERE WE COULD ACTUALLY DO SOMETHING ]
CLOSE MATHS LIBRARY
CLOSEDOS: CLOSE DOS LIBRARY =
EXIT: Normal rts based program close =

Figure 12.2. Control structure utilising test and conditional branch instructions.

The example itself, since I've chosen to use the amiga.lib printf()
function, is another that will require you (assuming that your
assembler gives you a choice) to create linkable, as opposed to
directly executable code. Most of the detail should be familiar from
earlier examples and, as you'll see from the source code, nothing
much happens once the libraries are open - in fact all we do is just
close them again. There is however a purpose behind this apparent
madness and, as you'll see later, it concerns shortcomings in the
continued use of the do it or branch over it philosophy. For the

moment though here is the program that the above pseudo-code
sketch in Figure 12.2. represents:

; some system include files...
include exec/types.i
include exec/libraries.i
include exec/exec_lib.i
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; external reference declarations...
XREF _printf
XDEF _stdout
XDEF _DOSBase

CALLSYS MACRO

LINKLIB _LVO\1,\2

ENDM
CALLSYS macro is used to extend LINKLIB and thus avoid
the explicit use of the _LVO prefixes in the function
; names...

; EQUate definitions...

_AbsExecBase EQU 4
LF EQU 10
NULL EQU 0

; main program code...

move.l _AbsExecBase,_ SysBase set up SysBase
variable

lea dos_name,at library name start in a1

moveq #0,d0 any version will do

CALLSYS OpenLibrary, SysBase macro (see text for
details)

move.l  dO,_DOSBase store returned value

beq EXIT test result for success

; if we reach here then the DOS library is open and its
; functions can be safely used!
CALLSYS Output,_DOSBase get default output

handle
move.l  dO,_stdout store output handle
beq CLOSEDOS
; now let's try and open the maths library...
lea math_name, a1l library name start in af
moveq #0,d0 any version will do

CALLSYS OpenLibrary,_ SysBase macro (see text for
details)
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move.l do,_MathBase store returned value
beq CLOSEDOS test result for success
; all library openings were OK so do a sign on message...

pea intro_message push intro message
pointer

pea format_string push format string
address

jsr _printf use amiga.lib printf()

addq.l #8,sp shortcut way to adjust
stack

; here we could DO SOMETHING
; now print a goodbye message...

pea goodbye_message push message pointer

pea format_string push format string
address

jsr _printf use amiga.lib printf()

addq.l  #8,sp shortcut way to adjust
stack

; all done so now we can close maths library...

CLOSEALL move.l _MathBase,al base needed in at
CALLSYS CloseLibrary, _SysBase

; close DOS library...

CLOSEDOS move.1l _DOSBase, a1 base needed in a1
CALLSYS CloseLibrary, _SysBase

; and terminate the program...

EXIT clr.l do
rts logical end of program

; variables and static data...

_stdout ds.1 1
_SysBase ds.1 1
| _DoSBase ds.1 1
| _MathBase ds.1 1
dos_name DOSNAME
|  math_name dc.b 'mathffp.library',NULL
| format_string dc.b '%s',LF,NULL
intro_message dc.b 'all libraries opened',NULL
goodbye_message dc.b 'program now closing down' ,NULL
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A Glimpse of Some Potential Problems

Obviously in real, ie larger, Amiga programs many more things
need to be done and to illustrate what | consider to be a rather
important shortcoming of a lot of assembler code the next program
adds a few more things to do to the framework used by the example
CH12-5.s program just given. The mathtrans library, which is a
library used to provide pre-written transcendental maths functions
such as sin, cos, exp and so on is opened. Strictly speaking the
normal mathffp library does not need to be open in order to use the
mathtrans library because when the mathtrans library does need to
use mathffp facilities it will open the mathffp library itself. If
however you wish to use mathffp and mathtrans facilities together
you should explicitly open both libraries for your own use. In the
examples which follow I've opened both libraries just to illustrate
how it’s done and secondly to give a little flexibility should you
wish to use these programs to experiment, with either mathffp
functions or additional mathtrans functions.

During the course of the program two new amiga.lib functions are
used which allow string representations of numbers, ie numbers
stored as the equivalent ASCII strings, to be converted to Motorola
fast floating point (ffp) form and back again. These ffp number
representations are long word (ie 32 bit) arrangements which have
been designed to represent floating point numbers in a way that
simplifies many mathematical operations. They consist of a 24 bit
mantissa (shown as Ms in the following sketch), an exponent sign
bit (S), and a seven bit exponent (E) arranged like this:

bit 31 24 23 16 15 8 7 0
MMMMMMMM MMMMMMMM MMMMMMMM SEEEEEEE

The decimal range allowed is very roughly from plus or minus one
times ten to the power plus or minus 19, ie:

(+/-) 10" <=> 10"

For full details of the ffp format you can consult the official
Motorola literature but for now our only concern with the ffp
format is that to use the mathtrans library’s SPExp() exponential
function on a number it is necessary to have the number, in ffp
form!

The amiga.lib afp() and fpa()

The amiga.lib library contains two functions which can convert a
string of characters representing a number into ffp form and back
again. As with the amiga.lib printf() both afp() and fpa() use
stackbased parameter passing so to convert the string form of a
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number into ffp form it is necessary to push the start address of
the string onto the stack and then make the afp() call (ie do a jsr
_afp) in the same way that the printf() call was handled:

pea number push pointer
jsr _afp an amiga.lib routine
addq.1l #4,sp adjust stack

The apf() routine delivers a result in dO and this is quite useful
because the run-time mathtrans library routine SPExp(), the routine
which I'll be using to calculate the exponential of the supplied
number, expects the number in register d0. Remember the run-time
libraries take their parameters in registers. As with all run-time
library functions our CALLSYS macro can be used so the source
code for the exponential call will just be:

CALLSYS SPExp,_ MathTransBase values sent/returned in dO

Now there is a snag with the exponential function, which is why I've
used it as an example. Even though a supplied number is within the
fast floating point allowed number range there is no guarantee that
the result of raising e to the power of that number will be. Basically
this means that SPExp() could fail and the function autodocs tell us
that if this does occur the routine will return with the 68000
processor’s overflow (V) flag set!

I'll not be doing this in the example which follows but obviously
this potential for failure cannot ordinarily be ignored. For the
moment though, for reasons of simplicity, | will forget about it and
instead will convert the result back to ASCII string form using the
amiga.lib fpa() function. After the above SPExp() call the ffp result
will be in register dO so conversion just involves pushing the
address of the buffer, where the ASCII converted result is going to
be stored, onto the stack, then pushing the contents of d0, making
the jsr call, and adjusting the stack like this:

pea result push result pointer
move.l do, - (sp) push ffp value

jsr _fpa convert back to ASCII
addq.1 #8,sp adjust stack

Having converted our ffp number to an equivalent ASCII string we
can then use the amiga.lib print() function to deliver the result back
at the CLI/Shell window like this:

pea result push sum string pointer
pea format_string push format string address
jsr _printf use amiga.lib printf()

addq.1 #8,sp shortcut way to adjust stack
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The only thing we now need to discuss is where we will get our
original number from. I've chosen to collect it from the CLI/Shell
command line and, for example purposes, I've decided that instead
of just using it via the originally supplied a0 pointer, we shall copy
it to a buffer area. As you now know, when a CLI/Shell program
starts register dO contains a count of the number of characters that
follow the program’s name on the command line. If the user does
not supply any parameters then dO will be 1 and the single
character will in fact be the command line's terminal linefeed.

It’s therefore quite easy to check whether the user has supplied a
number or not by using this immediate addressing form of a cmpi
instruction at the start of the program:

cmpi #1,d0

If this comparison sets the zero flag then dO equals 1 and the user
hasn’t supplied any other characters. If this was the case there
would be little point in the program continuing because there is no
number to convert. | mentioned earlier that a buffer would be
allocated to store the number and, since I'll be using a static
declaration (based on a ds.b declaration), this could lead to
problems. Why? It’s because if a user typed in a number with more
characters than | had allowed for then the operation which copied
data into the buffer would fill the buffer and then write over any
number of succeeding bytes (destroying their contents). On the
Amiga this could even mean that memory belonging to another
program is destroyed!

It should then be very obvious that we mustn’t allow this to happen
and so, if the user has indeed supplied some data, we’ll need to
check its length to see that it will fit into the buffer. A cmpi
co