€9 [VINYOS YOINY

In this series, Dave Jones will not
only provide the real facts about
how to program a bestselling
game: he also intends to back it
up by supplying the source code
to his first great game, Menace.
Each month, the Coverdisk will
contain a piece of source code to
ilustrate the particular aspect of
programming which Dave is dis-
cussing that month.

Usually, source code is one
of the programmer's most jeal-
ously-guarded secrets, because it
contains details of the tricks the

sy R

author has learnt to make his
code faster and more effective
than that of his rivals. Very often,
sections of the code are re-
employed in later programs.

Of course, Menace is no
longer a brandnew game and a
remarkable amount has been
learnt about programming the
Amiga since Dave wrote it: so
hopefully no harm will be done to
Dave's personal prospects. But
much of the information in these
pages will be invaluable to anyone
just starting out in programming

who wishes to produce a seri-
ously viable, upto-date and
saleable Amiga game.

Remember, this is serious
stuff. The code contained on the
Coverdisk is 68000 machine
code, so some knowledge of the
relevant language will be neces-
sary before you can get on with
writing your world-beating game.
To use the code, you will need to
assemble it using either Devpac
from HiSoft, with which it was
written, or Argonaut's Argasm as
demoed on this month's

-’ -
pfogrammeng. This month: system ¢

Coverdisk. If you are using
Argasm, be sure to include the
extra piece of conditional code
written by Jason. Good luck!

About Dave Jones...
Dave Jones is now 23 years old
and lives in Dundee, Scotland. His
first game, Menace, was released
by Psygnosis in November 1988
to considerable acclaim from
reviewers. It may look somewhat
dated now, but many of the
programming techniques it uses
are extremely advanced.

s 'used by top

™

Dave started work for Timex in
Scotland when he left work, doing
development work for the early
Spectrums, a background which
gave him a good insight into com-
puter hardware. Although origi-
nally involved in writing assenm-
bler test programs, he ended up
devising his own ingenious hard-
ware add-ons. Currently, he is stil
training in Microsystems at the
Dundee institute of Technology:
his programming is done at night!

Although Menace was written
entirely on the Amiga, Dave cur-

i3

beans abou

games

ntrol.

- i 1 fb

rently uses a PDS system running
on a 386 PC with which to write.
This system was used in the writ-
ing of Blood Money, the awesome
follow-up to Menace released in
May of 1989. Dave is a great fan
of the Amiga and, as you will dis-
cover, certainly knows his onions
from his hardware sprites...
Finally, Amiga Format would
like to say thank you to all at DMA
Design and at Psygnosis for their
support and assistance with this
feature series. Without whom it
would not have been possible...

GAMES

PROGRAMMING

Welcome to a series of articles in which most aspects of games
programming will be discussed in depth. More specifically, and quite
naturally, it will be aimed squarely at Amiga games programming.

Games are made much simpler on the Amiga by the abundance of
specific hardware that the machine possesses to handle the kinds of
work games require.

1 will assume some knowledge of 68000 programming. There have

games programmers, the Hardware Reference Manual.

Source Secrets

To try to discuss game program-
ming in general is a little difficult,
because there is an unlimited vari-
ety of methods & tricks that are
employed by different program-
mers. So, to give us a bit of direc-
tion, these articles will be accom-
panied by the full source code to
an Amiga-specific game: namely
my first game, Menace.

Source code to games is gen-
erally kept hidden away under lock
and key, because it is the culmina-
tion of many months' work on the
part of the programmers and a
fair bit of the source code is usu-
ally carried on to other projects. It
will be invaluable to this series,
and hopefully beyond it, in getting
across exactly how a game is
designed & written.

Each month a specific part of
the game will be documented,
accompanied by the source code
for that section. Menace should be
of some interest as it does make
use of a lot of Amiga-specific hard-
ware: hardware sprites, dual play-
field, hardware scroll, screen splits
and so on (even though the game
may look a little old these days!)

Defining our Terms
Some terms that are used in
games programming may cause a
little confusion, so first here is a
shortlist and description of the
main ones used by programmers.

VERTICAL BLANK or FRAME -
Essentially 1/50th of a second, the

time it takes for a TV or monitor to
update its display. An important
factor for a game is the speed it
runs at. The fastest will be 50
frames per second, ie the game
runs as fast as the TV or Monitor
can update. This leads to the silky-
smooth scrolling of some games
(like Menace, grin!) which can only
be achieved at this speed. You can
scroll slower, say 25 frames per
second, but this starts to introduce
a slight shimmer to the graphics. It
may be a surprise to learn most 3D
games only run at about 10 frames
per second, which shows the
scope for improvement if we had
very fast hardware.

RASTER/SCAN LINES - Raster
lines are basically the horizontal
lines produced by the monitor
which are related to the vertical
resolution of an Amiga screen.
Most games use 200 or more
lines of display. NTSC displays
used in the states can display a
maximum of about 220 lines. PAL
systems such as ours can display
about 270 lines. The Amiga is a
lot more flexible than other
machines as it allows us to define
our own screen sizes. The NTSC
system is why so many games
have a large black border at the
bottom of the screen: what fills
our screen by two thirds will give a
full screen on an NTSC system.
Not many programmers go to the
trouble of producing two versions
due to the large number of
changes needed to the game
(myself included) but full marks go

the programmers who do (Dino
Dini with Kick Off, for example).

TIMINGS - One method often used
to judge how fast a piece of code
is taking to execute (rather than
adding up all of the instruction
times: no mean feat!) is to change
the background colour of the dis-
play t6 a certain colour at the start
of the piece of code, then reset it
back to-the original colour at the
end of the code. This gives a
visual colour bar fidgeting about
on the screen, which is a nice indi-
cation of roughly how many raster
lines the code is taking. Next time
somebody says ‘| can clear the
screen in about 100 raster lines'
you will know what they mean.

DOUBLE BUFFERING - A technique
that entails using two copies of the
game screen. While one is being
displayed the other is being
altered, moving all the aliens about
for example, this cuts out all forms
of ‘flickering’ caused by changing
a screen while we are looking at it.
It is quite hungry on memory due
to the two screens, but is fairly
essential for smooth animation.

HARDWARE/SOFTWARE SPRITES
— The Amiga has the facility of dis-
playing hardware sprites which is a
very fast way of putting objects on
the screen. There is no visual way
to tell the difference between hard-
ware and software sprites: soft-
ware ones are drawn into the
actual screen memory. Hardware
sprites are a little limited on the
Amiga, but can be used for speed.
The main ship in Menace is made

been many articles written on this subject, and good books available, for
some time now. One book that is pretty essential is the bible of Amiga

up of hardware sprites, but all of
the aliens are software sprites.
Many people refer to software
sprites on the Amiga as BOBS,
short for Blitter OBjectS, as they
tend to be drawn using the blitter.
MASKING — When drawing graph-
ics into the screen it is preferable
to leave intact the graphics that
are already there. This is done by
masking, which lets all ‘holes’ in
the graphic that we are drawing
show the graphics underneath.
The blitter in the Amiga is an
expert at doing this for us.

EDITOR - Not a text editor, but a
piece of software that allows the
editing of game data such as level
maps, or alien movement pat
terns. These are quite time-con-
suming to write but save a lot of
time once completed. Menace has
no editors: it was the first game |
had written, and all data was typed
in by hand. Halfway through the
game | thought “Boy, do | need an
editor!” but never got round to
writing one. Unless you really
enjoy a lot of typing, one is
strongly recommended. Even one
written in another language like
BASIC will suffice: but the best
ones are usually integrated into
the game allowing you to edit data
at the press of a key.

This Month’s Source
The source file on the Coverdisk
(framework.asm) is a small but
invaluable program. Most games
tend to 'bash the metal' which sim-
ply means that the operating #

THE MENACE WITHIN

64 AMIGA FORMAT

¥ system is not used - ‘trashed’ -
which leaves us with 512K of free
memory and full control over all of
the hardware. This is required near
the end of writing a game when
memory may be short, but it means
having to reset the machine and
reload the assembler and source,
each time we test a program.

To get around this when trying
out programs we can be nice the
operating system by properly allo-
cating some memory, using DOS
to load some files, then WHACK,
hit it where it hurts and take over
the system. Once our program
has done what it wants we revive
the operating system: it has no
idea what happened, so it carries
on as usual.

This allows us to test virtually
every aspect of a game as if it had
complete control of the machine.
Of course if there are bugs in the
code being tested which cause a
crash, a reset will have to be per-
formed. It is always nicer to work
from RAM disk but be sure to save
to disk regularly. A recoverable
RAM disk is very useful if you have
expansion memory. ASDG produce
one (VD0:) which is by far the
most bomb-proof: Menace was
completely written using this, yet it
survived 99% of crashes.

: Framework uses the minimum

of operating system routines to
get by. This is the only time in this
series that operating system rou-
tines will be used, so a quick run-
through of their use is in order
before we delve into the more
meaty hardware.

OpenlLibrary/CloseLibrary
To get access to certain system
routines, such as DOS loading,
requires us to open an associated
library, which simply returns the
address of a table containing
some variables and addresses of
the routines to call. Framework
opens the graphics library to find
the address of the system cop-
perlist (more about this later). It
also opens the DOS (Disk

Operating System) library to
access disk routines.
AllocMem/FreeMem

An exec library routine (the exec
library is always in memory) to ask

GAMES PROGRAMMING

THAT MENACE SOURCE CODE...

Here is a complete listing of the source code included on this
month’s Coverdisk. Framework takes over and shuts down the
Amiga system so that the game can do what it likes. You can type
this listing in using a text editor if you so wish.

* Amiga system takeover framework

* 1988 Dave Jones, DMA Design

£ system, allowing
oF

+ restoring to

1 be properly al

Written using Devpac2

section Framework,code c

* READ ME !!!

* The following block of conditional code is included to provide

compatibili

onauct’s Arghsm assembler system. The
* dinclude files pr i3 from those on
* the Devpac program disk t ra assignments have

* to be made £ ; assemble under Arghsm.

= - Jason H.
ifd _ _ArgAsm
incdir “Include: ™
include exec/funcdef. 1
_SysBase equ 504
elseif
incdir"include/”

endc

* END OF CONDITIONAL BLOCK

include libraries/dos lib.i
incliude, exec/exec 1lib.i
include hardware/custom, i

Hardware equ

MemNeeded egu

SystemCopperl egqu

SystemCopper? equ

LeftMouse equ 8
start lea GraphicsName (pc),al open graphics library purely

move.l SysBase, ab to find the system copper

clr.id do

jsr _LVoCpenLibrary (a6

move.l d0,GraphicsBase

lea DOSName (pe) ;al open the DOS library to allow
eir.T do the loading of data before
jsr _1Vo0penLibrary(a6) killing the system

move.l d0,DOSBase

move.l EMemNeeded, dl properly allocate some chip

Continued on Page 68

the system for some free memory
is called. Even if you multitask
your assembler there should be
around 200K free for testing.
Framework will simply exit if not
enough memory could be allo-
cated. Only CHIP memory (the spe-
cialist hardware can only access
the first 512K, termed chip mem-
ory) is allocated because virtually
all data used by a game has to be
accessed by the hardware.

DOS Open/Read/Close
There are no DOS routines in
framework at the moment as there
was no need at this stage. These
will appear next month to allow us
to load any file into our allocated
memory. Files can also be
included straight into the source
with the INCBIN directive: however,
this tends to make assembly time
quite long. DOS routines are sim-
ple to use so we'll take this path.

The above is the full extent of
the operating system routines
used. The rest of Framework basi-
cally consists of two routines,
TakeSystem & FreeSystem.

TakeSystem saves all the vital
information about the system,
namely copper list addresses, and
DMA and interrupt status. The sys-
tem is then stopped by disabling all
interrupts and DMA channels. This
frees us to set up our own values.

Between the TakeSystem &
FreeSystem calls is where our code
will sit until FreeSystem is called, at
which point the system is revived
and we will be returned to the CLI.

If you run Framework as it
stands just now, not a lot will hap-
pen. The screen will blank to the
background colour, the mouse
pointer will disappear and the usual
disk drive clicking will vanish. The
system is now dead, waiting for the
left mouse button to be pressed.
Press the mouse button and every-
thing will return to normal.

Note that we did not clear the
screen in Framework, yet it did dis-
appear. This is because we turned
all DMA {Direct Memory Access)
off. The Amiga uses DMA exten-
sively when it requires to fetch or
move memory. All the custom chips
use this feature to feich the data
they need (blitter, sound, sprites
etc) and we can selectively #

AMIGA FORMAT 67

turn on or off their ability to do
so. DMA does tend to slow the pro-
cessor down if it is being used
extensively: however, this method
of fetching/moving data is a lot
faster and more efficient than using
the processor to do the same job.

Main Game Loops

To give an idea of exactly what
routines will be covered later, we
will look at the 'main game loop’
for Menace. All games should
have a main game loop. Through
the use of descriptive labels in
your source this should show virtu-
ally every stage of the game as it
is processed. Cue Menace:

WaitLine223
vcount(ab)
TwoBlanks

MainLoop bsr
not.b
beg
bsr

Checkplayfield2
bsr
bsr

CheckCollision
bsr

EraseMissiles
bsr
bsr

UpdateMissiles
bsr

Drawforegrounds
bsr
bsr
bsr
bra

Moveship

LevelsCode

PrintScore
CheckKeys
CheckPath
MainLoop

TwoBlanksbsr
Checkplayfieldl
bsr
FlipBackground
bsr
bsr
Restorebackgrounds
bsr
ProcessAliens
bsr
bsr
bra

Moveship

SaveAliens
DrawAliens
Mainloop

As well as the above routines we
will also need extra ones that are
not used in the main game. These
will be high score, initialise, text
printing etc. Each routine should
be as independent as possible
from each other. By this | mean it
should be possible to remove one
of the above routines from the
main loop, and still run the game:

GAMES PROGRAMMING

Continued from Page 67

moveg.l #2,d1

memory for screens etc.

jsx _LvOAllocMem(a6) di = 2, specifies chip memory
tsc.l di where screens,samples etc
beg MemError must be (bottom 512K)
move,l dl,MemBase
move.l #Hardware,ab dus to constant accessing
bsr TakeSystem of the hardware registers
* it is better to offset
wait btst #leftMouse,Porth them from a register for
bne wait spead & memory saving(a6)
bsr FreeSystem
move.l _SysBase,a6
move.l MemBase,al
move.l #MemNeeded,d0 free memory we toock
jsr _LVDFreeMem(aé)
MemError move.l ‘GraphicsBase.al
jer _LVOCloseLibrary (26)
move.l DOSBase,al finally close the
sz _LVoCloseLibrary (a6} libraries
clr.l 4o
rts
TakeSystem move.w intenar (a6),SystemInts save system interupts
move.w dmaconr(a6),SystemDMA and DMA sertings
move.w #5TE£f,intena (a6) kill everything!
move.w #357fff,dmacon(as)
move.b #%01111111,ICRA _ kill keyboard
move.l $6B,LeveliVector save interrupt vectors
move.l $6c,Lavel3Vector as we will use our own
res keybd & vblank
* routines
FreeSystem move.l LevelZVector, 568 restore system vectors
move.l Lewvel3Vector,S6c and interrupts and DMA
move.l GraphicsBase,al and replace the system
move.l SystemCopperl(al),Hardware+copllc copper list
move. 1 SystemCopper?2 (al) ,Hardware+cop2lc
move.w SystemInts,dl
or.w £5c000,d0
move.w d0, intena (a6)
move . W SystemDMa, 40
or.w #58100,d0
move . w d0, dmacon (a6)
move.b #%10011011, ICRA keyboard etc back on
rts
Level2Vector de.l 0
Level3Vector de.l (1]
SystemInts dec.w 0
SystemDMA dec.w o
MemBase de.l 0
DOSBase de.l i}
GraphicsBase de.l 0
crap dec.b 0
even
GraphicsName dec.b ‘graphics. library’,0
even
DOSHame de.b *des.library’ 0
end

Note that the tabulation and the ‘comment’ asterisks may vary.

obviously with funny effects, but
the game should not crash. This
greatly helps when debugging a
game as it nears completion.

Some of the most obscure
bugs are when areas of memory
may be being corrupted. With a
main game loop constructed of
individual routines we would suc-
cessively remove individual rou-
tines until the bug vanished: this
way we will at least know in which
routine the bug lies. Well, at least
90% of the time!

Data Structures - the
essence of a game.
Anybody who has taken courses in
programming should have had the
concept of data structures ham-
mered home to them. Designing
good data structures for your game
data CANNOT be over emphasised.
A data structure is simply a defini-
tion of exactly what data, and in
what order, is needed to describe

and control a certain object.

Take for example an alien
moving about the screen waiting
to be blasted. The information we
need on this alien may be X & Y
coordinates, number of frames of
animation, where it is going, how
may hits to kill it, how many hits
has it taken, etc etc. To write code
to move each alien individually
would be very wasteful of time and
memory, and be very inefficient.
One or two routines should be writ-
ten that control every alien by
working on a data structure that is
common to all aliens.

Most programmers tend fo
work this way as it is a fairly natu-
ral way to do things. Try not to cut
down on what data your structures
contain in the hope of saving mem-
ory. Complete game code, with all
the data structures, tends to use
about 10%15% of the available
memory, the rest being used for
graphics, displays, sound efc.
(other games, such as 3D ones,
may differ). The ProcessAliens rou-
tine from the main game loop sim-
ply processes data structures, and
nothing else. This will be
described in full later.

Next month will see the start
of the really juicy programming
bits with the source for the dual
playfield scroll routine. B

68 AMIGA FORMAT

"

PROGRAMMING

DAVE JONES, programmer

of Psygnosis’ hits Menace

and Blood Money, presents

part two of his series in

which he divulges the tricks

THE WHOLE TRUTH ABOUT .
GAMES PROGRAMMING: 2 =

of the trade used by top

games programmers.

This month:

SCROLLING

T his month's example with
source is the dual playfield
Menace scroll. The frame-
work source form last month has
been used to allow the scroll to be
executed, with return to the CLI
upon pressing the left mouse
button. Try executing the assem-
bled file on the disk, what you see
should hopefully be recognisable
as Menace, minus any aliens or
your ship on the screen.

When designing your scroll
routine there is one major decision
to make: namely, should it be a
hardware or software scroll? First
Il explain the differences.

Hardware Scroll

The Amiga has the ability to hard-
ware scroll the display screen.
This means the entire display can
be shifted pixelly, left or right, with
virtually no overhead or processor
usage. It actually does better than
this in that it can change the scroll
value every line if required: take a
look at Shadow Of The Beast for
some impressive use of the hard-
ware scroll.

Software Scroll
A software scroll entails using the

processor, or preferably the blit-
ter, to physically shift the display
memory the required number of
pixels. Take for example a fypical
32-colour screen that requires
40000 bytes: to scroll the entire
display memory, even using the
blitter, would take the best part of
a frame (1/50th of a second).

Pros and Cons
It seems fairly obvious at first
glance that the hardware scroll is
the one to go for: however,

thoughts must now turn to what
exactly will be drawn into the dis-
play memory. To move an alien

TUTORIAL

about the screen for either
method requires a simple proce-
dure as follows...

1. Save the memory where the
alien is to be drawn.

2. Draw the alien (masked) into
this memory.

3. When moving the alien, restore
the memory and go back to (1).

If we did not do the saving and
restoring of the display memory,
then as we moved that alien,
a 'trail’ of itself would be left when
it moved. The above procedure
is exactly what happens in
Menace, where the saving and
restoring does take up a major
part of the execution time of the
game. This is where using the
software scroll can have an advan-
tage. With the software scroll the
usual method is to use the blitter
to copy the display memory, shift-
ing it as it goes, to another part of
memory, which will obliterate the
contents of what was previously
there. This means that only step 2
of above need be executed when
moving aliens about, as the whole
of the display memory is restored

In one of David's
other games,
Blood Money, he
used a software
scroll to enable
him to put more
objects on the
screen - as you
can see from
this screenshot
of some furious
action.

while it is being scrolled.

If you envisage having a LOT
of objects flying about on a
scrolling screen, then there comes
a point where the software scroll
will save you more execution time

than the hardware one. The
software one is also simpler to
write, not having to bother with
steps 1 and 3 above. Incidentally
in Blood Money | switched to a
software scroll for the very reason
of the number and size of the
aliens kicking about compared to
those flying around in Menace
There are, of course, many variza-
tions on scrolling techniques which
are dreamed up by programmers:
it is simply a case of sitting down
with pen and paper and working
out which one is best suited to
your own game.

Scenery Blocks
With the scrolling method decided
upon | had to come up with a tech-
nique for scrolling through approxi-
mately 30 screens for one
Menace level. The simplest way
would be to have 30 screens laid
end to end in memory and simply
hardware scroll through memory.
However, at approximately 24
Kbytes per screen this would
require some 720 Kbytes, not
exactly easy with only 512 Kbytes!
Game playing areas therefore tend
to be made up from maps.

The scenery graphics were
broken up into 16x16 blocks,
each of these given a number
from 0-255 (to store as a byte). To
make best use of the blocks many
blocks were designed to fit
together in certain ways giving as
much variety as possible. Some
games that use this technique are
easily spotted when graphic #

AMIGA FORMAT 63

» blocks that do not quite match
up are placed together — Battle
Squadron exhibits this quirk. As
Menace is a dual playfield game
the maximum number of colours
per block is 8, made up from 3
planes. Each block required 96
bytes of memory (2 bytes wide x
16 high x 3 planes) with a com-
plete level taking 24576 bytes
(256 blocks x 96 each).

The scrolling technique
devised allowed us to scroll
through an infinite number of
screens, but required memory for
only twice that of a normal screen.
The Menace screen was larger
than the normal 320 wide to make
the playing area that bit larger. 16
pixels were added either side,
expanding it to 352 pixels in
length and providing a nice over-
scan effect. Another extra 16
pixels were also required at the
left side due to the way the Amiga
accomplishes the hardware scroll
(these are the extra pixels that are
normally hidden but are hardware
scrolled on) - this is fully explained
in the Amiga hardware manual.
The actual size is therefore 368
pixels wide of which 352 are dis-
played. As mentioned, the scroll
routine requires memory for two
screens laid side by side (see
figure 1), we can calculate the
memory required as...

46 bytes wide
2 screens
192 high

3 planes
52992 bytes

oM X

The 192 line height of the playing
area was chosen as it is the clos-
est multiple of 16 to 200, the
game panel adds another 32
pixels to the overall height bring-
ing the full screen size to 224
pixels. The background playfield is
constructed in a similar way (see
figure 2) but requires an extra 32
pixels at the end of each screen
for clipping purposes (more about
this at a later stage). The memory
required for the background is...

50 bytes wide

X 2 screens
x 192 high
x 3 planes
= 57600 bytes
Given that that one screen is

368 x 192 pixels, this corre-
sponds to 23 x 12 blocks (each
block being 16x16). As each block
is stored as a byte in the map,
then map data for one screen
would be 23 x 12 = 276 bytes.
For approximately 30 screens per
level the map data would therefore

64 AMIGA FORMAT

PROGRAMMING

TUTORIAL

Battle Squadron from Electronic Zoo exhibits a programming quirk

where graphic blocks that do not quite match up have been used.
Can't see it? Then look closely at the ridge running across from the

left of the screen.

be some 8280 bytes. Looking at
the size of the file MAP on the
disk, which is the map data for
level 1 of Menace, shows a file
size of 5282 bytes — so level 1
consists of roughly 19 screens.
The map data in this file is simply
organised as ‘strips of bytes'. This
means that every 12 bytes (the
number of blocks high the screen
is) represent the 12 graphic
blocks that sit one on top of
another to form a 16 x 192 high
strip which is scrolled on from the
right.

That actual graphic data for
each block is stored in the file
FOREGROUNDS. As discussed,
each block is 96 bytes in length,
given that the foregrounds file on

the disk is 24480 bytes in length,
we know this wil contain 255
graphic blocks (1 less than the
256 maximum allowed). The first
96 bytes are always 0, as block 0
is a special case being a blank
block (there has to be some blank
areas on the screen to fly
throughl).

You could try experimenting
with your own graphic data and
map. If you altered the bytes in the
map in any way, then you will see
16 x 16 blocks scrolling on that
were obviously not designed to fit
together. You can even try chang-
ing the map file to some other file,
as it is simply a sequence of bytes
that can be any value. The pro-
gram will not crash doing this. You

Screen A Screen B 192 high
368 piels 368 pixels
S y (foreg 1)
Figure 1
2 “
EE Screen A Screen B EE 192 high
% ZR!
g pinels ~ - 368 pixels - 3%
Background screen
Figure2
New 16x16 blocks
352 pixels
. viewable
S —
%
] /u
5 Aﬂi‘
Screen A Screen B

Scenery (foreground) screen
Figure 3

can even do this with the fore-
grounds file to produce some
pretty random graphics!.

How the scroll works...
Now we know how the map and
graphics are organised | will
attempt to explain how the scroll
works. If it sounds confusing,
which it probably will at first, per-
severe, as when it clicks it should
seem pretty straightforward.

Take a look at figure 3. This
shows our two screens laid side
by side in memory. At any one
time we are displaying 352 pixels
(22 words) of this data. The bit
plane pointers on the Amiga can
be positioned on any word (16
pixel) boundary. Incrementing the
pointers therefore would scroll
through memory 16 pixels at a
time, which is a mega speed com-
pared to the single pixel Menace
requires. We therefore use the
hardware scroll to shift the display
pixely from O to 15, then when
we want to scroll to the 16th posi-
tion we increment the bit plane
pointers but reset the hardware
scroll back to 0. We will carry
on doing this untl we have
scrolled entirely through screen A
and are displaying screen B. At
this point we reposition the bit
plane pointers back to display
screen A and repeat the procedure
again. OK, this will smooth scroll
us from A to B.

Now, to keep new data
coming onto the screen we draw
graphic blocks as defined in the
map, one strip at a time (16 x 192
pixels) just to the right of where
we are displaying (as shown in
figure 3). Therefore for every 16
pixels we scroll on we draw a new
strip from the map, scroll another
16 pixels, draw a new strip etc,
efc. Remember that the strip is
being drawn just to the right of
where the display is, so we cannot
see it being drawn, but only see it
scrolling smoothly on.

Right, if you understand so far
you may notice a quirk in that when
we have fully reached screen B, we
reposition the plane pointers back
fo screen A and start again. This
sudden jump to screen A though
will cause a complete new screen
to appear showing what was previ-
ously in screen A. This is where we
apply the twist in the tail. As we are
drawing the strips into screen B
and scrolling them on, at exactly
the same time we draw the same
strip into screen A, just to the left
of where we are displaying (see
figure 3 again). This means that as
we are forming and scrolling
through screen B, the exact same
data is being formed in Screen A,
so when we are completely display-
ing screen B, screen A is alsob

» exactly the same. NOW when we
display screen A again, nothing will
seem to happen as the same data
is being displayed, but we have
moved the plane pointers back to
screen A, allowing us to repeat
this process, and to scroll through
large numbers of screens with only
two screens in memory!

If your brain has now turned to
jelly with that lot, do not worry, the
light will dawn soon. Read it a
couple of times, remembering the
problem you are trying to over-
come.

The background playfield in
Menace is scrolled through in the
same way, although no map build-
ing is done as the background is a
simple wrap scroll where whatever
gets scrolled off on the left reap-
pears again on the right. At the
start of a level, the background
screens A and B are both built
identically from a small map that
allows only 16 blocks maximum.
The Background is scrolled once
every SECOND frame to allow it to
scroll half the speed of the fore-
ground. This gives the nice paral-
lax effect. The graphic data for
these blocks are included as
source in the scroll source on the
disk. The background graphic
blocks are only 4 colours.

The copperlist

Finally for this month a run down
of the copperlist for the main
game (Listing 1). | tend fo put
everything that describes the dis-
play into the copperlist, although
many can simply be written with
the 68000. It allows the full dis-
play to be quickly changed or
referred to rather than looking
through your source to find where
you changed modulo’s etc, for cer-
tain copperlists.

. The first instruction is a ‘wait
for line 10, which simply allows a

PROGRAMMING

LISTING 1 - MENACE COPPERLIST

clist
copperlist

scroll value

colours

SR B B B R T A

$0A01, $FF00
bplpt+0, $0000, bplpt+2, $0000
bplpt+8, $00C
bplpt+1
bplpt+4, 500
bplpt+12

bplpt+18, 50000
bplpt+6, $0000

$6600
, $00FF, bplimod
, $002E, bplcon2
,$0028, ddfstop, $00D8
diwstrt, $1F78,diw , SFFC6
color+0, cC 50000
color+4, , 50000
color+8, color+10, $0000
color+l2 color+14, $0000
color+lé ,color+18, $0000
0, color+22, 50000
,$0000, color+26, $0000
8, $0000, color+30, $0000
2,50000, color+34, $
color+36, color+38,
color+40,
color+d4,

,$000
coloxr+60, $0000,

sprpt+0, $0000
sprpt+4, 50000, =
sprpt+8, $0000,
sprpt+l
sprpt+16, S0000,

» $0000
or+30, $0000
or+4, $0000

TUTORIAL

bit of time after a vertical blank
occurs in which to change some
values in the list, before the cop-
perlist is executed again.

Next we set the bitplane point-
ers. Six planes in all for dual play-
field, three for the back playfield
(as defined first) then come the
three for the front playfield. Note
these all point to O as they will be
initialised once we have allocated
SOIMe SCreen mermory.

Next come the control regis-
ters. BPLCONO is set to six planes
with dual playfield activated.

BPLCON1 sets both playfield
scroll values to 15. As we want to
scroll left we have to actually
decrement the hardware scroll
value, incrementing it will scroll us
right.

BPLMOD's are set to the dif-
ference in width of the screens laid
side by side in memory, to the dis-
played areas.

DDFSTRT and DDFSTOP are
increased from the normal values
by one word each, DDFSTRT
is increased by a further word due
to the hardware scroll. The hard-
ware manual goes into this in
greater depth.

DIWSTRT and DIWSTOP are
set to reflect a screen size of 352
x 224 pixels. Note that the display
is set higher up the screen than
normal to allow 224 pixels to be
viewed on an American system on
which Menace appears as full
screen with overscan.

COLOR and SPRITE registers
are all set to O initially, these are
set up by the initialisation routine
of the game.

After 192 lines have been dis-
played a copper change occurs
which switches the display to a 16
colour one in which the panel is
displayed. The panel is 352 x 32
pixels, the graphic data is stored
in the file PANEL on the disk. ®

AMIGA FORMAT 67

DESIG N NG : e Top programmer
LLE & & - A
I HE MAI author of

Psygnosis’ hits
Menace and
Blood Money,
reveals more
secrets of the art.

This month:

ne of the most important
things about an arcade-
style game is the look |

and feel of the object the player is
controlling. Ninety-nine percent of |
the player's attention will be
focussed on controlling and watch-
ing this object, so any problems in
the control method or any dire-
looking graphics will soon put peo-
ple off playing the game: so it's
wise to put an awful lot of effort
into movement and definition of the
main character.

With Menace, we tried a few
different spaceships before we
found one that most people liked.
The control method for moving a
ship about the screen was, of
course, to be a nice, simple eight-
direction affair, because you can't |
really ask for too much variation in |
a scroling shooter.

However, because we wanted
to control the ship with the mouse
as well as with the joystick, some
nertia was added to the ship. This
makes the mouse-controlled ship
move more like a cursor would
under mouse co

The inertia is simply a snippet
of code that prevents you instantly

witching direction, and instead
forces the ship w down in the
direction it was going, stop, and |
then accel to its maximum
speed in the c n direction. It is
not so no 3 the initial
e speed of your ship, xels per
@ frame, but try changing the speed

in the source to Six pixel

Shaping the Ship
This month’s source adds the main
ship and weapon code to last
month's scrolling background. It
was decided right at the start of
writing Menace that the main ship
should make use of the Amiga’s
hardware sprites. There are nor-
mally eight sprites available, each
of which can be 16 pixels wide by
any height in three colours.
However, the widerthan-normal
screen on Menace steals some
DMA cycles from the sprite hard-
ware allowing only six sprites to
be displayed. This would seem to
be enough for the main ship, if we
allocated two sprites for the out-
riders, leaving four sprites for the
main ship. So take a quick look at
Figure 1. This shows the first ship

GAMES PROGRAMMING

we used in Menace, which, you
have to admit, does look pretty
dire! The restriction of three
colours was detracting far too
much from the main ship, making
it look pale compared to the rest
of the graphics.

The next step, then, was to
use the sprite overlay technique
that the Amiga allows, which bask
cally means that two sprites can
be combined as one but with 16
colours. This chopped us down to
only three sprites maximum. By
combining the outriders with the
back of the ship as one sprite, and
the front of the ship as another
sprite, this left us with one free for
use if we needed it (which in the
end we did not). The result was
the ship in Figure 3, which is the

Many questions programmers receive are of the form ‘How do you get
graphics from DPaint (which most people use) into the game?’ A lot of
a project’s time is devoted to writing programs that grab the graphics
and store them in the desired format. For Menace, programs were writ-
ten that converted brushes to hardware sprite format, blitter format
and raw screen format. These programs all involved a common IFF
reader, along with code to save out the graphics to a DOS file.

These type of utilities are essential in writing a game, and luckily
they are appearing in many different guises in the public domain,
which should help you to start. Eventually you should sit down and
write a flexible conversion program that can generate ST or PC format
graphics for any other versions of a game that may be required. For
example, here is the menu for our own conversion program (written in
C) that has been developed over the years:

PC-ilbm2raw v1.2 (c)1969 DMA Design
Usage: ilbm2raw [options] filename [output filename]

Options available are :-

&

Sets machine type lo AMIGA
Sets Bit Plane(s) Ignore for any of the bit planes

Followed by numbers between 0 & 7 to select which bit

all the planes

Switches ON source

Aebd Lzki Lodhdbbe

diagnostics
Sets machine type to EGA 16 colour
Sets grid pick up operations, 16x16 graphics picked up
Sets machine type to CGA
Switches mask Inversion ON, masks become the NOT OR of

Switches on mask as an extra (last) plane
Followed by width (in pixels) for grid operation
Followed by height (in pixels) for grid operation
Switches On ROW major order for grid,
(default is column major order)

Sets machine type to ST

Sets machine type to VGA 256 colour
Switches OFF the Zero Check for grid operations

ie. All zero blocks are saved out in grid operations

As you can see, the list is quite comprehensive: this toock a while to
write, but now means we very rarely have to write graphic utilities,
because working from IFF screens means we can convert to most

machine graphic types.

ship that appears in Menace.
Figure 2 was another ship we
tried, which was my favourite but
the big publishers in the s<y
plumped for the other one, sc |
gave in...

Adding up the Anims
The boxes around the ship outline
the actual size of the sprite that
had to be stored in the game. At
the back of the ships you will
notice the spaces at the top and
bottom of the box. This is where
the outriders appear, attached to
the ship. The ship can be viewed
straight on, or tilting up or down.
Each weapon added therefcre
required another three animations
to be drawn.

There are also two extra
weapons in the form of cannons
and lasers, making a total of nine
animations, plus the ship with both
weapons attached bring us to the
total shown of twelve animations.
The outriders have a possible five
directions but rather than store the
animation for every possible com-
bination (12x6 = 72 animations) of
ship with outrider, the outriders
are stored seperately and drawn
into the extra space left at the
back of the ship every frame in the
game. This is provoked by the
usual speed to memory trade-off.

Creating the Code
Now-on to this month's source
code from the Coverdisk. The
source has the following functicns
implemented since last month:

* [nertia ship movement

* Qverlayed hardware sprites

* Joystick read

* Mouse read

* x,y to hardware sprite
coordinate conversion

* ship animation

The ship is 32 pixels wide, and will
therefore need two hardware
sprites as a hardware sprite is a
maximum of 16 pixels wide. The
ship, however, contains 16
colours which is only possible by

overlaying hardware sprites, which
brings the number used to four.
Figure 3 shows the Menace ship
with the size box drawn around it.
The back of the ship is 44 pixels
high to accomodate the outriders:
the front of the ship is 22 pixels
high. The file ships.s on the disk
contains the hardware sprites in
source format. In this file you will
see labels named shipl up to
ship4. These correspond to the
following basic designs:

ship1 - basic ship, no weapons
ship2 - ship with cannons

ship3 - ship with lasers

ship4 - ship with cannons & lasers

Each ship also has three sets of
data: shipN.1, shipN.2 and
shipN.3, where the .1 is the ship
tilting up, .2 is the ship side on
and .3 is the ship tilting down. In
the source you will see a DC.L 0
statement at the begining and the
end of each piece of data for a
hardware sprite. The one at the
beginning will contain the two con-
trol words defined in the hardware
manual that describe the sprite’s
X,y position along with overlay
information. The long word O at
the end signifies the end of the
sprite. The way the control words
are layed out is quite messy, with
bits and bytes in awkard places.
The routine in the source called ‘xy
to sprite’ takes a normal xy pixel
position in a couple of registers
and returns the long control word
in the correct format. A small rou-
tine like this will always come in
handy from project to project.

We can work out how many
bytes a ship animation takes with
the following method:

back of ship = 2 bytes wide * 44
high * 2 planes = 176 bytes + 2
long words (control) = 184 bytes

front of ship = 2 bytes wide * 22
high * 2 planes = 88 bytes + 2
long words (control) = 96 bytes

ship animation = (184+96)"2 (due
to overlaying) = 560 bytes >

This figure of 560 bytes will crop
up quite often in the source to cal
culate where a certain ship anima-
tion is. The ship animation routine
for tilting the ship up and down

works by storing the animation |

address for a particular ship’s
side-on view: when the joystick is

pushed up or down another vari- |

able is set to either -560 or +560
(normally O for the side-on view)
which automatically adjusts the
animation that is viewed. Changing
the animation address to the ship
with cannons for example, will still
tilt the canons up & down as the
offset from the side-on view to tilt-
ing up or down is still +/- 560

Reading the Input

The joystick/mouse is read every |

frame, and the ship moved at this
rate. Using hardware sprites
makes this very simple no matter

| what speed the game runs at.
| Blood Money runs every three

frames, but the players’ ships are
updated every frame. This has the
advantage that even if a game
slows down occasionally the
player can stil zip about at the
same speed, so the slow-down
much less noticeable. This
accomplished by making the ship
movement integrated into a vert-
cal blank interrupt routine. Menace
does not require this.as the game
runs in a frame anyway.

The joystick read routine is
quite simple,
explained in the hardware manual.
The mouse routine was included to
emulate the joystick if a joystick
was not available. It is not a true
mouse read routine as it
checks if the mouse is being

IS
IS

the basics being |

only |

moved up/down/left/right. If so, it |

modifies the results the joystick
routine returns, making it look as

GAMES

though the joystick had been
pressed in a certain direction. This
method does away with having a
mouse/joystick option in the game
as you can use either at any time.

A fulkblown mouse routine would |

return information on the direction
and speed of the mouse, and it is
not too difficult to modify the rou-
tine to do this if you require this in
your own game.

Making Motion

The ‘moveship’ routine is the main
part of the ship code. lts main
dealings are with the inertia on the
ship. lf, for example, you are mov-
ing right at three pixels at a time,
you cannot simply press left and
go left at three pixels at a time. A
vector is used to gradually reduce
and then increase your speed In
the form +3,+2,+1,0,-1,-2,-3. This
leads to a m more realistic feel
to the movement on the ship.
Small touches like this often make
the game that bit more playable

Tricks and Treats
Although only eight
sprites are usually available on the
Amiga there are some tricks worth
mentioning that can stretch this
amount a little bit.

After a hardware sprite has
been displayed it can be used to
display some new data one scan
line after the end of the last. For
example, if the ship in Menace was

hardware |

PROGRAMMING

at the top of the screen, then 45
pixels down (height + one scan
line) we could draw the ship agan
if required on a different x positicn |
{or any y position > 45). This we
could repeat all the way down unzil |
we ran out of space. The obvious |
drawback with this is that objects
would always be in rows across
the screen: they could not pass
over each other vertically.

Other hardware sprites can
cross over each other, though, so
if you had some clever code that
manipulated all eight sprites and
sorted out sprites by saying ‘This
object here is further down the
screen than this one, so | can re-
use the same hardware sprite to |
display it, but this object has the
same Y so it will require a different
hardware sprite’ you can in effect
‘multiplex’ sprites In some
instances you can multiplex 64 |
sprites down to the Amiga's eight |
depending on the restrictions you
apply to their movement. This
technique was extremely well used
on the C64 and is now being used
to some good effect on the
Amiga. Battle Squadron, for exam-
ple, uses hardware sprites for zll
the enemies’ bullets and the play-
ers' firepower, which looks in
excess of 32 sprites being dis-
played at once. B
B That's my ramblings over for this

month. Back next month with some
more juicy source.

GAMES

PROGRAMMING 4

THE WHOLE TRUTH ABOUT

games programming

PART 4

Menace code: namely, the alien movement and control routines.

There will be no source with this month's instalment because | wil
only be describing WHAT the routines accomplish — next month will cover
HOW they are accomplished, along with the source.

I n this and next month’s articles | will detail the largest part of the

Movement is Life

So, we want to have aliens flying about the screen in nice patterns,
attacking your ship, launching missiles at you, tracking your movements
and doing all the other things that aliens do best. All the basic ingredients
of a good shootem-up. What should spring to mind to control all of the
movements is a decent data structure. As | have said before, there is no
substitute for sitting down with a pen and paper and having a good think
about what has to be accomplished. The best idea is to start off with the
basic data that would have to be stored about an alien flying about on
screen. This would probably be the following:

Alien number
Alien X coordinate
Alien Y coordinate
Alien speed

There will also have to be some way of telling the alien what to do. The
simplest form would be a coordinate for it to move to. Once it gets there
it would need another coordinate to go to. It would do this repeatedly
until we tell it to stop, or until is has been destroyed. First, then, we will
define the basic structure to describe a particular alien

- reset the rs counter
- one word for the alien's x coord

rsreset

X.Pos rsw 1

Psygnosis’

DAVE JONES, the ace coder behind

hits Menace and Blood

Money, spills more secrets.

Y.Pos rs.w 1 - one word for the alien’s y coord
Sprite.Num rs.b 1 : a byte to hold the alien number
Speed rs.b 1 : a byte to hold the alien speed

Following this in memory would be a table of x,y coordinates for the alien
tc move to in sequence. An example piece of source that moves an alien
from left to right and back again could be defined as follows:

dcw= 0,100 - start alien at x=0, y=100
dcb 6,2 - use alien number 6 with a speed of 2
dew 320.100,0,100,$7fff ; move to 320,100 then to 0,100

- the S7fff is an end marker

This basic structure will provide only limited control of an alien, so it's
time to add a few more features. Most of the aliens are animated (Figure
One, overleaf, shows an eight-animation Menace alien) so as well as
defining the alien number, we also have to define its current animation
number, Note that in games an animated object is usually given a number
that relates simply to the base address of that alien. The number of
animations it actually has is stored separately. This makes changing the
number of animation frames very simple, because the alien numbers all
remain exactly the same. So we will also have to store the number of
animations the alien contains somewhere in the structure as well as its
current animation number:

rsb 1
rs.b 1

: a byte to hold the current animation
: a byte to hold the maximum anims

Anim.Num
MNum.Anims

The basic idea, then, is that for each game cycle we increment the

AMIGA FORMAT 85

GAMES

FIGURE ONE:
AN EIGHT-ANIMATION
MENACE ALIEN

Anim.Num (0,1,2,3,... etc) until it hits the value in Num_Anims when we
would reset it back to zero. Straight away a small problem crops up in
that we may not want to animate an alien every game cycle (1/25th of a
second for Menace). In fact very few of the aliens animate every game
cycle as this is a little fast, so we will also have to introduce an animation
delay into the structure:

rsbl

Anim_Delay ; a byte to hold the animation delay

The method of incrementing the Anin.Num until it hits a maximum then
resetting it to zero is termed a WRAP animation as it wraps around to
zero. In some cases we may want the animation numbers to increase to
a maximum and then decrease to zero: this is termed an UPDOWN ani-
mation. To indicate whether or not to use a wrap or updown fype of ani-
mation requires us to store a single bit of information. There are many
occasions in the controlling of an alien that only requires a simple on/off
definition. These tend to be grouped together in the data structure and
called a MODE word or byte. This is simply a collection of bits used for
generalpurpose description of simple on/off contrals. This is now added
to the structure:

rs.b 1

Mode ; single byte to hold eight flags

UpDownequ l<<3 ; define the updown flag as bit 3

Note the equate of which bit in the control byte reflects the animation

type. NEVER use ‘magic numbers' in your source such as the statement
btst #3,Mode

This in no way tells you what bit 3 signifies: you may remember as you

are working on the project, but what about in a year's time when you

FIGURE TWO:
FOUR SPRITES MAKE ONE
LARGE SPRITE

86 AMIGA FORMAT

PROGRAMMING 4

come back to re-use some of this source? The above should have been
written as
btst #UpDown,Mode

which is very clear and has the advantage that to change the actual bit
number that the UpDown flag is set at requires only the EQU statement
above to be changed. Always make the assembler do as much work for
you as possible. Right, lecture mode OFF, let's introduce the next element
into the structure.

Reason for Living is Dying
Most aliens’ sole purpose for existing in a shoot-em-up is to be blasted.
Do we want them to die after being hit once, though? For most, | think
not. We will have to introduce a variable to define how many times we
can fill an alien with laser shot before it explodes:

: number of shots an alien can take
: Sff for infinite

Hits_Num rs.b 1

As you can see a certain value has been introduced that makes some
aliens indestructible. This is not used very often but is handy, say for
some asteroids tumbling across the screen that you simply have to
dodge and cannot destroy (anybody who reached Level 6 of Menace will
know exactly what | mean!)

As far as describing the alien, that is about it. | have made no men-
tion of the size of the alien in the structure as in Menace all aliens were
32 x 24 pixels in size. To make larger ones simply meant moving a few
about as though they were joined together (see Figure Two). It certainly
makes life simpler handling only one size of alien, though you do lose out
a little on flexibility.

Back to Motion
Now back to the movement of the aliens. The basic GOTO command was
implemented simply by defining pairs of x,y coordinates for the aliens to
head for — they continued until they were destroyed or until a special
coordinate value told them to stop.

This is very inflexible for performing, say, a small circle movement.
We would have to define goto points for many points on the circumfer-
ence of the circle. This may take quite a while to work out, and would
have to be recalculated for any other aliens at different x,y coordinates
on the screen that wanted to perform a similiar circle.

One simple way of overcoming this problem is to use a relative coor-
dinate system whereby rather than interpreting the x,y values as goto
coordinates, they are simply offsets that are added to the present xy
coordinate. This allows us to define a shape as a set of offsets from a
base point, the base point being arbitary. This should be able to be used
in conjuction with the goto points so we can switch freely between abso-
lute and relative movement at any time.

It is apparent that some form of control data has to be added into
the coordinate list to switch between relative and absolute or one may be
mistaken for the other. What basically happens in Menace is that move-
ment always starts off in absolute mode, but at any time we can switch
to and from relative mode by making one of the coordinate values a con-
trol word. For example to goto the middle of the screen, then move in a
triangle shape, then return again may look something like:

dc.w 160,100 ; goto 160,100

dc.w OffsetMode ; switch to offset mode

dew 2,2 : move 2 along and 2 down a few times
dew 2,2

dew 2,2

dew -2,0 ; move 2 back a few time

dew -2,0

dew -2,0

dcw 2,2 ; move 2 along and 2 up a few times
dew 2-2

dcw 2,2

dc.w OffsetMode ; toggle back to absolute mode
dc.w 0,100 ; back to the start x,y

Control words have certain bits set that distinguish them from a goto
coordinate (not much point in, say, having 32768 as a coordinate with a
screen width of 352 pixels). What we end up with is a small language that
describes the path aliens follow. We can go on adding control features

GAMES PROGRAMMING 4

that make the path data more compact yet more powerful. The offset
mode will set a bit in the MODE byte to indicate when it is in offset mode.

Memory Economy

To cut down the amount of data required to describe a complex path (like
a large ellipse formed from offsets) it would be ideal to be able to branch
to some other path data, and then return after executing so many of its
commands. The triangle path above, for instance, requires 40 bytes for
the offset data. If we required 12 aliens to perform the triangle move-
ment, but at different coordinates on the screen, we only want to define
the offset data once, and have the rest of the aliens branch off to that
data inbetween executing their own path data. Menace has a GOSUB
command in the path data for this purpose. The gosub command passes
over to the new offset data, then at the end of the data is the equivalent
of a RETURN command which returns control back to original path data.
The above could be written as:

dcw 160,100 : goto 160,100

dcw Gosub,Newpath-* ; branch to some new data

dcw 0,100 ; back to the start x,y
Newdata dc.w OffsetMode ; switch to offset mode

dew 22 ; move 2 along and 2 down a few times

dew 2.2

dew 22

dew =20 ; move 2 back a few times

dew =20

dew =20

dew 2,-2 : move 2 along and 2 up a few times

dew 2-2

dew 2-2

dcw OffsetMode ; toggle back to absolute mode

dc.w Return

if we had 12 similar paths to the above the memory required would now
be drastically reduced.

More Memory Economy
Another useful memory saver is a FOR type contruct that allows any part
of the path data to be repeated a set number of times. Imagine trying to
move a series of aliens in a ‘stepping’ motion whereby they move, say,
along 16 pixels then down 16 pixels, achieved by:

OffsetMode
4,0
4,0
40
4,0
0,4
04
0,4
0,4

The above performs one step, but if we wanted to repeat this 10 times,
it would normally mean repeating the data 10 times or using many GOTO
statements - but, yes you've guessed it, a loop function was imple-
mented: simply appending the command

dc.w Doloop

to the end of the data will cause the last xx bytes of path data to be
repeated so many times. This caused two new items to be added to the
alien structure, namely

rsbl
rsbl

Loop_Offset
Loop_Count

; the number of bytes to loop back
; how many loops to perform

This limits the loop command to only allowing one size of loop in each
individual path, although this restriction was not noticed as multiple loops
were never required.

Other Tweaks
A PAUSE function was added that allowed an alien to pause at a specific
point for any length of time. A simpfe function but used quite often:

dc.w Pause,PauseValue ; the Pause value is in 1/25 seconds

A SEEK mode was added that allowed an alien, at any time, to start to
track your ship and try to collide with it to reduce your shield. This is
worked similarly to the pause function with a count specifying how long
to seek your ship before carrying on with the rest of the path data:

dc.w Seek,SeekCount ; seek ship for 1/25 * SeekCount secs.
Related to the seek command above is the FIRESEEK command which

allowed one alien to start another path. This was used to allow aliens to
fire missiles that used the seek mode:

dc.w FireSeek,SeekCount ; start a seek path from this alien

To finish off the command set some additional simple commands that
came in useful were added. These are:

ChangeSprite — allowed you to change the sprite number at any
time. Useful for transforming aliens into other types.

ChangeSpeed — quite obvious this one. Slow moving sprites can be
given a quick turbo boost to attack the ship.

ChangeAnim - allows manual changing of the animation number.
Used to mimick, say, turning a corner at any point on the screen

And that, basically, is that. Table 1, below, lists the full data structure for
an alien path. Hopefully you can see the benefit of designing such a con-
trol system for moving objects about. It need not necessarily only be
used in a shoot-em-up style game but can relate to many styles of game.
It soon becomes quite simple to add more powerful commands to the
code, which results in the code being useful in many more projects.

Now you know what the commands do - next month | will present the
source and explain how they are accomplished. m

; TABLE 1 !
; FULL DATA STRUCTURE
rsreset : S
Next.Path RSW 1 offset to the next path
. X.Pos RSW 1 current x position
. Y.Pos RSW 1 currenty position
' Kills.What RSW 1 kills others aliens if dead (0-11)
. Table.Offset RSW 1 the current table offset ks
. Sprite.Num RS.B 1 sprite number
' Anim.Num RS.B 1 animation number :
- Anim.Delay RS.B 1 delayin 1/25th secs, dynamic copy
| AnimDelay2 RSB 1 static copy to refresh the above
| Speed RS.B 1 speed in pixels
. Pause.Count RS.B 1 dynamic pause counter
~ Mode RS.B 1 flags, see bleow
| Loop.Offset RS.B 1 loop offset in bytes (-ve)
| Loop.Count RS.B 1 dynamic loop count
Hits.Num RS.B 1 number of hits to kill
Num.Anims RSB 1 number of animations
Seek.Count RSB 1 dynamic seek count
Table.Size RS.B 0

* This is followed by x,y bytes to move to (always even) with com-
mand |

\
| * codes inserted to alter the control and movement.
| * Mode bits ol
OffsetMode equ 1<<0 setwhen in offset mode
Seek.Mode equ l<<l setwhenin seek mode
UpDown equ 1<<3 setwhenupdown
animation
AnimUpDown equ l<<4 setto animate up,
reset down ;
: HeatSeekPath equ l<<5 settosignfya

Ay

L Az foxa e °

AMIGA FORMAT 89

JameS programming

As we get close to the complete
Menace, DAVE JONES fills in the

details of how to animate aliens.

ollowing straight on from last

month's ramblings about the

features required by the alien
movement routine, this month’s
Coverdisk contains the source
code that implements all the func-
tions discussed last time. It is
quite lengthy - lucky you dont
have to type it in! — and consists of
three main sections:

1. The control of aliens in a path.
2. The starting/stopping of paths.
3. Drawing the aliens in each path.

The drawing of the aliens is broken
down into three further stages:

1. The replacing of backgrounds
saved from the previous printing of
the aliens.

2. The saving of the backgrounds
where the next set of aliens is to
be drawn.

3. The actual drawing of the next
set of aliens.

Big Clipper

Note that no clipping of BOBs
(Blitter OBjects) is carried out in
Menace. Clipping, a very common
feature in games, ensures objects
move smoothly onto the screen
from the borders rather than just
instantly appearing. The aliens in
Menace do not appear instantly,
though, so you may have realised
that some form of clipping must
be taking place.

GAMES

PROGRAMMING s

THE WHOLE TRUTH ABOUT

The simplest way to achieve a
clipping effect is to make the phys-
ical screen size larger than the
one that is being displayed. In
Menace all aliens are a maximum
size of 32x24 pixels. If this area is
added to each side of the dis-
played screen size it gives us an
area of the screen into which we
can draw an alien that will not be
displayed (see Figure Two). Once
we start moving the alien onto the
screen it will glide smoothly on.
Once again, the trade-off
between speed and memory
comes into play. We can keep the
screen the same size as the dis-
played one and use software to
calculate how much of the alien is
clipped, only drawing the correct
amount, or we can sacrifice the
extra memory to dispense with the
software clipping. In some games
it becomes essential to use a soft-
ware clip. Basically if you plan on
having large moving objects in a
game, then there will probably not
be enough memory to allow the

extra screen size around the
displyed screen to accomodate
and hide large objects.

Blitter Pill

The aliens are drawn using the blit-
ter (surprise, surprise). The blitter
is much, much faster than using
the 68000 to move memory
around - even small bits of mem-
ory — and let nobody try to tell you
different, especially ST owners.
Blitter sprites are masked, shifted
and drawn in one operation for
each plane (three planes in all).

The graphic data is stored in
the most common way for blitter
data. This is each plane of graphic
data stored sequentially in mem-
ory, with a plane of mask data
last. The mask is simply all the
planes of data ORed together. The
mask is used to ‘cut’ out of the
screen the pixels where some data
from the BOB has to be placed.
Without this, the pixels that are
there affect the BOB data resulting
in the wrong colours appearing.

e

Alien stored as:
Plane 1 4 bytes x 24 scanlines =
96 bytes

Plane 2 4 bytes x 24 scanlines =
96 bytes

Plane 3 4 bytes x 24 scanlines =
96 bytes

Mask 4 bytes x 24 scanlines =
96 bytes

Total = 384 bytes per anim

To draw an alien BOB requires
three separate blits, one for each
plane of the screen we are draw-
ing into. All four blitter channels
are used and are assigned to:

Blitter A channel = mask
Blitter B channel = data
Blitter C channel = screen
Blitter D channel = screen

Two channels point to the screen
data as the screen is used as both
a SOURCE and a DESTINATION
channel. The blitter is used to per-
form the function of ANDing a

2 Hords data

shift
| | R SRR MO RSO | 1 .
| | 1 1 1
| | 1 1 1

3

Screen HWords,
are affected

Figure 1

AMIGA FORMAT 119

word from the screen with the
inverse of the mask word and then
ORing the data into the result. This
function first removes the data
from the screen where the mask
has >1 bits present, then draws
the data into these bits. This is
performed for all three planes. The
one mask is applied to all planes
but the data for each plane is, of
course, different.

Shift Work

The shifting operation incorpo-
rates a neat little solution to a
problem that many people have
asked me how to get around. If a
32-pixel wide BOB is to be drawn
onto the screen with the blitter,
then we would tell the blitter it is
two words wide by however deep.
This is ONLY true if the BOB is not
shifted: ie its X position is a mult-
ple of 16 pixels (or an even num-
ber of bytes).

As soon as we want to place a
BOB on ANY pixel position we will
be affecting THREE words in
length on the screen (see Figure
One). This is due to the fact that
we must use the blitter to shift the
BOB right as it draws it into the
screen. The common solution
most people use is to store their
graphics with an extra word at the
end of each scanline: ie aliens in
Menace would be stored as 48x24
pixels in size. This extra word is
for the blitter to shift the data into:
a maximum shift of 15 is needed.

Note that the the blitter width
when drawing shifted BOBs is
always one word greater than the
actual BOB width to accommodate
for the shift. This overhead obvi
ously increases the memory
required to store all the BOBs you
may have to store (unless they do
not require to be shifted as in
character sets). There is indeed a
way the blitter can handle this,
although not documented in the
hardware reference manual.

The basic aim of the problem
is to give the blitter an extra word
of zero at the end of each scan
line, but still manage to store the
BOB at only 32 pixels wide. Now,
if we do store the BOB only 32 pix-
els wide but blit on the 48 pixels
required what will happen is that
some extra data will appear on
each scanline where the BOB is
drawn. This will be data from the
next scanline down in the BOB due
to the blitter fetching this extra
word. In effect, the LAST WORD of
the scanline will contain data and
not zeroes.

However, the LAST WORD
should ring a bell when we are
talking about the blitter as the blit-
ter has a feature called first and
last word masks for its A channel.
Normally these each have the

Screen 352 pixels

32 hidden pixels E
clirping

foxr

Figure 2

value SFFFF, which masks off no
data in the blit (the first word in the
A channel blit is ANDed with the
blitter A first word mask, and simil-
iarly the last word in the A channel
blit is ANDed with the blitter A last
word mask). If, however, we set
the last word mask for channel A
to $0000, and assign channel A
as our mask channel (ie channel A
will point to the mask for each
plane blit) then the extra word of
data picked up by the blitter will be
ANDed with the word S0000 which
will force the data to be zero. This
then gives us the desired effect of
having a zero word at the end of
each scanline of data.

One small side effect still
remains, though, in that the blitter
has fetched an extra word of data
for the BOB, this data coming
from the next scanline down in the
BOB data. We therefore have to
change the MODULO for the mask
& data channel to a value of -2.
The modulo is simply a value
added to the blitter pointer at the
end of each scanline. This would
normally be zero if the data was
arranged sequentially, but because
we have fetched an extra word of
data, we have to pull back the blit-
ter pointer to thaf extra word oth-
erwise every subsequent line of
data would be out by 24.6..
bytes of data. So to summarise:

1. Data is stored sequentially
as Plane 1, Plane 2, Plane 3, Mask

2. The exact size (4 bytes x
24 scanlines) only is stored

3. Blitter channel A will point
to the mask for each blit

4, Blitter channel B will point
in turn to each plane of data

5. Blitter channels C & D will
point in turn to each screen plane

The width of the blit will be 3
words, as the data is only 2 words
wide the last word will be masked
to 0, and the modulo will be -2 for
the mask and data channel

The modulo for the channels C
and D is the width of the screen
minus the width of the blit.

Having a bliter to handle most of
the drawing of objects is really a
godsend on the Amiga. Try switch-
ing to a machine that has no hard-
ware support for drawing, where

you rely only on the processor,
and you are immediately faced
with many problems and compro-
mises in trying to achieve what the
blitter can handle.

This is one of the reasons why
Amiga games can be exactly the
same as an ST version if it was
developed first. Porting a game
from the ST to the Amiga can usu-
ally be done in a matter of days
with no problems. Take a game
written for the Amiga, though, that
makes heavy use of the blitter,
and you will need some major
rewriting of code. This is the main
reason why people tend not to
make full use of the Amiga hard-
ware when designing and writing a
game for both 16-bit machines.

Back on the Path

Now back to the path movement
control that was discussed last
month. The final bit to explain was
how the commands are actually
defined as data. The file ‘paths.s'
on this month's Coverdisk contains
the data for all the paths for Level
One of Menace. All the paths were
designed and entered by hand.
This is not the ideal way to do
things, some form of path editor
would have been better, but if it's
your first game you are writing you
tend not to be too ambitious. It's
best to concentrate on actually
finishing a game!

A single path starts with the
definitation data exactly as
described in last month's struc-
ture. This describes the speed,
animations, etc.

Following this is the move-
ment data. We basically had two
types of data:

1. A coordinate pair which
were relative or absolute.

2. A command byte with
optional parameters.

Looking at the coordinates first,
we must decide upon the maxi
mum values these can be. For rel
ative coordinates a limit of +/- 16
would suffice. For absolute coordi-
nates we have to look at the
screen size to determine the lim-
its. Basically the minimum X & Y
will be 0,0 . The screen is 352 pix-
els wide, but 32 pixels are added
to the left and right for the clipping
as described. This gives us a max-

imum X,Y of 384,168 (note the x,y
coordinate defines the upper left
of the BOB, so although the
screen is 192 pixels high the maxi-
mum Y is 192-24 = 168).

The BOBs are not clipped at
all on the Y coordinate as they
appear behind the foreground on
the dual playfield screen. Thus the
border graphics that are always
present top and bottom hide the
fact that BOBs can suddenly
appear at the top or bottom. From
the maximum values we see that
the Y coordinate would fit in a byte
but the X coordinate would need a
word to hold any value. To save
memory and keep both coordi-
nates the same it was wise to
store the absolute coordinates
divided by two. This imposes a
slight restriction in that only even
coordinates are allowed, but this is
never noticeable. We can now
store the x,y absolute or relative
coordinates in a byte with a value
from -16 (Sf0) to 192 (ScO).

lllegalities

As there are some values that are
illegal when it comes to the coordi
nates (Scl to Sef) we can embed
the control commands discussed
last month into the coordinates to
further save memory. A maximum
of 16 commands were allowed
and these were assigned the val
ues Se0 to Sef. The flow was then
along the lines of:

Fetch the X,Y coordinate bytes

If X bytes is in the range SEO
~ SEF then execute a control

command

else if the offset mode bit is
set the coordinates are

relative and are added to X,Y

else the coordinates should be
advanced towards.

And that is basically that. This
month's source implements this
form of control, the data being
acted upon is in the file ‘paths.s’. It
is very simple to try changing the
coordinates and commands to
form your own paths. B

Next month will see the game
becoming playable with the
firing and collision detection
routines added so at last you
can blast and be blasted!

AMIGA FORMAT 121

G AMES PROGRAMMING &6

THE WHOLE TRUTH ABOUT

games proaramming

PART
Collision

detectio

The Menace code is nearly

complete, becoming playable
as DAVE JONES adds the

bump-into-things routines.

This month sees all of the game com-
ing together - and
playable! — with the inclusion of
collision detection routines.

now

There is normally som
colision detection pertorm a
games - one object mo Tt
another object 15 a very 0
occurence that normally has to be
detected. Menace required the

following collisions to be identified:

= Player ship to aliens

= Player ship to foreground
(expert mode and guardian)
* Weapons to aliens

These three are really all that is
required in Menace, The first two of
the above are very simple thanks to
the Amiga hardware and the way
Menace was designed

Remember that the player's ship
is a hardware sprite. The Amiga has
the ability to detect collisions
between any of the harwdare sprites
and any bit plane(s) we specify. In the
dual playfield mode that Menace runs
in, bit planes 1, 3, & 5 form the back
playfield, with the even planes (2,4 &
6) forming the front playfield. The
alens are back
playfield (planes 1,3 & 5) so we want
the hardware to detect when the hard
ware sprites that form the ship collide
with pixels in these planes

A problem springs up here,
though, in that the actual background
graphics would register a collision as
these completely fill up planes 1 and
3 - being fourcolour, they only
require two planes. Plane 5 is, how-
ever, untouched by the background
graphics and will ONLY contan data
from the actual aliens. So rather than
detect a hardware sprite collision
between planes 1, 3 & 5 we will only
detect a collision to plane 5

You may notice a small quirk here
in that only checking the third plane in
the alien graphic data will not be very
effective if the alien used very few
colours that have bits in the third
plane set. In reality all of the aliens in
Menace used mainly the colours that
are included in the third plane set
(colours 4, 5, 6, & 7) as these were
redefinable for each alien. The back-
ground colours (0,1,2 & 3) were very
rarely used in the aliens themselves.

arawn into the

Hardware Registering
The hardware register that controls
the spriteto-playfield detection 1s
called CLXCON, This lets you select
which bit planes to detect, and the
value to detect (normally 1 for a set
pixel). All that happens is that a mask
of the ship 15 ANDed with the bit plane
data. This will only register a collision
when two bits 0 115 indk
cated in the CLXDAT register

This 1s simply a hardware imple
mentation of a commonly-used soft-
ware routine where an object's mask

veriap, wr

G AMES

ANDed with a screen mask to

k for a colhision. This type of
ection 1s termed 'pixel perfect
ection as just one pixel of your

n aien

other

methods of C
are sometimes a httle cru
many tmes have you he
shout ‘No way | was dead, | was
miles away from that bullet, stupid
skl game!.

Ship to Foreground
The ship to foreground collisior
detection was handled
collision between plane [5
being registered. Inhally | registered
collisions between planes 2 &0
of the foreground planes
exhibited a quirk because th
missiles are drawn into t
ground playfield. If the ship had quite
a few speedups you could fly over
some of your own slower-moving mis-
siles — and then you lost energy!

Obviously not a desired effect, so
the solution was to only draw the mis-
siles into planes 2 and 4, and collr
sion detect only to plane 6. Thi
eel to the foreground
on as colours 0,1,2
3 in the foreground graphics woul
not register a it There was many
sprinkling of the other colours in the
graphics, though, so the effect was
not too noticeable,

As a hint, it you want to see the
sort of effect that using only a single
plane of some graphics would have in
collision detection, load your graphics
into Pixmate or Butcher (image pro-
cessing programs) and switch |
bitplanes you will not be using. This
gives you a visual indicaton of jus
what 1s going to register a hit. It also
gives you the opportunity to swap 2
few of the colours around to get the
best use from the single plane

Y fnre
e fore-

o o e

PROGRAMMING 6

The mamn

Bilood
its mask
for collision detection.

Figure 1:
sprite trom
Money with

The mask is smaller
and has no rotor
biades, 'o encourage

the player 1o squeeze
through small gaps.

Being Generous

It 1s usually preferable to make coll-
sion detection 'generous’. This sim-
ply means that the player can
stray into objects by a few pix
els before a collision s
detected. This is not possible
to do it you are using the
hardware colision detection,
but 15 quite simple if you are

implementing it in software.
Figure 1 shows the main
sprite from Level One of Blood
Money. Beside it s its collision
mask. Rather than use the actual
mask of the sprite, a new mask was
stored that had a few piels trimmed

off around the edges. The blitter
rather than the hardware method,

was used to AND this mask with a
plane of the screen
This allowed certain parts of your
helicopter (note in the diagram the
blades have been removed) to enter
the side walls with safety. This allows
a little more skill into the game and
eggs players on to have a go at
squeezing through tight spots.
This method of collision detection
5 one r downfall. Although we
we have hit an alien, we
1 For Mer

as the game was

weh one

ergy — in nly except peing the
nat vy 1d PICK

p. The on, thot can only
3ppear on its own on the screen, so if
ve it an aken durng the bonus

have been

What hit What?

t part of the

collision

to determine what particular
missile hit what particular alien. This
must be implemented using some

form of coordinate checking, This is
the second man way to perform
collision detection

Coordinate checking can never
be pixel perfect unless we checked
every pixel coordinate in the missile
to every pixel in an alien, which would
require HUGE amounts of time and
cause a game to crawl along. What
normally happens 1s that a ‘box’ Is
defined within the two objects you are
checking. A box only needs two coor
dinates, the top left and bottom right.
If two boxes overlap then we flag a
colision. You can see this Is quite
rough in that not many aliens appear
as a box shape

In Menace the missiles are quite
small, so rather than define a box for
each missile, only one coordinate at
the tip of each missile was checked
If this coordinate entered the box of
any alien then a hit was registered.

| made all the alien collision
boxes 32 x 24 pixels in size, i
the same as the alien size. T d
appear to cause problems if the alie
was guite small in size, not filling the
entire box. Have a look at Figure 2.
This shows a small alien with a mis-
sile entering its box, flagging a coll-
sion. But as you can see we would
not want this particular case to flag
any collision as the missile is quite far
away for the actual alien itself.

One way around this would be to
store a collision box size for each
alien, The one in Figure 2 for example
would suit a box of 24 x 18 better
This makes the calculation of whether
a missile was in a box or not more
lengthy, though, as we are not dealing
with constant numbers. This
seem being picky but If we have 12
aliens flying around, and as you can
have up to 18 different miss
active at once (missiles, laser, car
etc) this would mean checking every
missile against every alen = 216
checks. This will be quite time con-
suming as there is a fair bit of calcula-
tion in each check.

may

10Ns

Make it Simpler
What we need is a quick way to tell if
a missile has hit ANY alien; if this hap-
pens we can then check for WHICH
alien it has hit. Fear not, for this is
guite simple to do.

What we need to do is combine
the mask detection with the coordr-
nate detection, We cannot use the
Amiga's hardware detection for mis-
siles to aliens as this only works with
hardware sprites. The blitter can do a
quick check for us, though.

The blitter has a bit called BZERQ
in the DMACONR register. This bit will
be set true if the result of the previ
ous bt operation is all zeroes. We
therefore get the blitter to perform an
AND operation between the mask of
the missile, and plane 5, which only
contains data from the aliens. If the
BZERO bit comes back false, 1e the

158 AMIGA FORMAT

G AMES

PROGRAMMING &6

3 &

2%

Figure 2

result of the blit was NOT zero, then
the missile must have colided with
some alien data

NOW we can perform the coord:-
nate detection to find out which alien
we hit, This also solves the problem
in Figure 2, which would not now flag
a collision because the mask detec-
tion would not flag a hit, so therefore
the coordinate detection would not be
then be performed

When we perform the blit to AND
the mask with plane 5 we switch off
the blitter Destination channel. We do
not want the blitter to draw the result
of the blit, so it 1s pointless to have
area of memory to point the D
nel to.
It 1s quicker and therefore more
tch off the Destination
g < blit. This s a handy
feature of the biitter allowing us to
combine a few channels In some way,
iterested in whether
r not.

t to sv

o| for tt

the result

This m of performing the
missile-to- on will be consid-
erably fas even faking Into

sration. On aver
f the eighteen
be hitting

e coordinate
vel: only 3x 12

account the b
age only three out
missiles would act
aliens. This reduc
checking to a low
= 36 comparisons

Love Missile F-111
That, then, is all the collision required
in Menace: ship to aliens, ship to fore-
grounds, and missiles to aliens. The
source code for this month (on next
month's disk) covers all this, along
with the drawing of the missiles.
There are four types of missile

* Normal missile
« Cannon

Figure 2: An alien from
Menace is struck by a
missile. If a standard-
sized box is used to
define the aliens' colli-
sion area, this rather
small alien will be hit
too easily. A smaller
size of box is needed
for smaller aliens.

e | aser
» Qutnder

All have different ranges and speeds.
They all simply subtract one from an
alien's hit number, but lasers are not
killed once they have hit an alien —
they carry on till the end of the
screen and are therefore more
powerful. All other weapons are killed
as soon as they hit an alien

Graphically they are quite small
(typically 16 x 4 pixels) and are just
four-colour. The blitter 1s used to
draw them into plane 2 and 4.
Weapons in shoot-em-ups nowadays
are getting BIG. If you plan on trying
to write one, | would say the bigger
the weapons the better for MEGA
effects. There should be no differ-
ence In the collision detection, only in
the extra time taken to draw bigger,
badder weapons.

Completing the Code...!
Sadly, there was no space for the
code on this month's Coverdisk, but
watch out for it next month — the
Menace code is now pretty well com-
plete and playable!

All the paths for Level One are
there to be blasted, collisions to
aliens will reduce your ship energy
until zero, at which point you will be
returned back to the CLI. When you
reach the end of the level the game
will also return to the CLI

This leaves only the guardian to be
added, which will be covered next
month along with a discussion of the
ancillary stuff such as music (where
does it come from, how much mem-
ory should you reserve, how much
does it cost! eic), text routines, disk
routines and such like. B

TheGuardian !

THE WHOLE TRUTH ABOUT

games programming

PART]

Here it is — the last instalment

of Menace, the game! This

month’s source contains the

addition of the guardian

graphics and code.

a few normal aliens, as described

last month. It is not normally
feasible to have a huge animated end
guardian as it would require vast
amounts of memory. The usual
sacrifice is to have the main bulk of
the guardian as a single bitmap, with
bobs or sprites overlayed on top for
the animating sections.

The classic R-Type did this in the
end of Level One guardian where only
the tail and a small part of the
stomach were actually animated, but
it was still pretty impressive. Menace
is not that impressive, but it does
demonstrate the usual technique.

'[he guardian is simply made up of

Big Bad Boys

The pictures above and right show
the guardians from Levels One and
Five respectively. These are the
DPaint screens. All guardians are 256
x 192 pixels in size. They are drawn
on the righthand edge of the screen
in strips of 16 pixels, just as the map
was. Rather than store them as a
simple bitmap image (3 planes x 192
high x 32 bytes wide = 18432 bytes)
a simple compression was used in
order to save memory.

Each strip of 16 pixels was
compressed by noting where all the
zero words ocurred and only storing
the actual nonzero data. This was
done by looking at the words from

% Then the "death’

path is initiated
which ensures
nobody takes a
leisurely affitude
when dealing
with the
guardian!®

each plane of the image in succes-
sion from the top of a strip down to
the bottom. If all three planes held no
data (this happens a lot, as you can

see from the figures) a
single bit

was stored
to flag this, and no data was stored in
the compressed file.

If any of the planes did contain
data then this was flagged by a single
bit, and the three words of data were
copied to the compressed file. At the
end of the strip (192 lines high) we
will have only copied the non-zero

data to the compressed file, and will
have 192 bits of data (24 bytes) to
signify which line of the bitmap this
particular data came from. This is a
very simple but relatively quick
compression method (known as a

as we produce a

‘bitmap header’,
map of bits to represent the data). It
usually halves the size of the guardian
data for each level.

Eye Holes
You can see in the picture above the
'hole’ for the eye in the Level One
guardian. The eye is simply a normal

AMIGA FORMAT 127

alien following a standard path. The
game knows when a level has been
completed when this alien is
destroyed. All aliens have a unique
number so this is very easy to check.

The guardian bitmap image is
drawn in the front playfield so all the
aliens appear behind the image as
with the foreground scenery. This
allows aliens to ‘appear’ anywhere on
the screen, but as long as they are
behind the guardian it will not be
noticeable. This is how the small
‘tadpoles’ on the Level One guardian
are repeated. Their path data simply
makes them appear under one of the
guardian tentacles, then swim left fill
they are offscreen, then go back to
the tentacle; and so on. Nice and
simple, but it works.

The guardian path is repeated for
about 30 seconds, which should be
enough time to kill the guardian. If it
has not been killed in this time then
the ‘death’ path is initiated in which
case all the aliens are substituted for
homing mines that cannot be
destroyed. This ensures nobody
takes a leisurely attitude when dealing
with the guardian!

Death by Explosion

When you finally kill the guardian
another alien path is started. This
one, though, is not deadly, but is
simply a collection of explosions all
around the guardian body to give the
effect of it exploding. This is no
different from any other path data and
shows that a flexible routine can be
used in many places in a game,
saving the task of writing more code
for some effects.

And that is basically all the game
ingredients covered. | have not
presented the code for the ‘extras’
that go into a game as many are
quite simple and others have been
are the result of many months’ work
and cannot be published, but I'l run
over some of the main ones.

Disk Routines

Hmmm, the main reason for many
sleepless nights for Amiga program-
mers! There are three basic levels to
using the disk drives on the Amiga for
reading/writing your data. AmigaDOS
is by far the simplest, and is fre-
quently used for development tools.

To use the DOS routines for a
game requires that the operating
system is fully intact. This causes
severe performance and memory
loss. The performance loss can be
solved by using the framework given
in the first article to disable then
re-enable the system when you wish
to use a DOS routine.

The memory loss due to the
operating system, though, cannot be
solved. You will typically lose 100
KBytes if you want to use DOS. This
is a lot of memory to a programmer
so the DOS route is not usually taken.

The trackdisk device is a set of
Amiga system routines that allow you
to access the disk as individual
sectors. It is quite fast and can run
with the minimum of the operating
system being intact. Memory loss is
still a problem, though, at around 50
KBytes, and once again you have to
enable the system to use the track-
disk routines. Providng you can work
with this it is a useable alternative to
the real hardware nitty gritty.

Getting right down to hardware
register level is the lowest we can go.
Come down to this level and you have
complete control of the system and
ALL the memory. Be warned though,
MFM encoding, Precomp, SYNC
words etc. are all fricky issues. In
their individual ways they are quite
straightforward, but the difficulty is in
testing them all together.

You cannot use a monitor such as
Monam2 to debug, as this would
require the system to be running,
which would interfere with the code
you are trying to test. The ideal
situation is remote debugging (con-
necting two Amigas via the parallel
port, as Devpac Professional allows)
but this is quite expensive.

The method | used when first
writing the disk routines was simple
trial and error and many late nights.
Luckily they only have to be written
once. Once they are working simple
refinements are all that is required.
The Abacus book ‘Amiga Disk Drives
Inside and Out’ has recently appeared
on the market, which should prove to
be a big help.

This is the only method to use if
you want the full memory and
complete control so it is well worth
spending time writing some reliable
disk routines for your game.

% q flexible routine
can be used in
many placesina
game, saving the
task of writing more
code for some
effects®

GAMES
PROGRAMMING 7

Music And Sound Effects
The music and sound effects for
Menace were written by Dave
Whittaker. His name is fairly well
known for Amiga game music (other
titles include Shadow Of The Beast
and Xenon I). The ideal situation is to
get the music written by someone like
Dave, who does this for a living.

At the end of the day what you
get for your money is the music and
sound effects, for basically any
machine you require, along with the
code to play them, all supplied in a
single module of data.

You simply call one of his routines
from within your code, and off goes
the music or sound effects etc. This
makes life very simple for the game
programmer, the music and effects
usually only taking one day to be
added to the game.

The Amiga, though, is well
catered for in the music department.
You may decide to write the music
yourself with one of the standard
packages such as SoundTracker or
SoundFX. These popular programs
have source code available to play
the music that you create. You can
therefore save some money by
having a friend with a little musical
ability, compose a track on one of
these packages, then spend a little
time on getting the player working in
your own code.

These packages do not, however,
cater for the playing of sound effects
over the top of the music. A simple

AMIGA FORMAT 129

GAMES
PROGRAMMING 7

sample player is all that is really
required to generate some effects,
so the simple solution is to allow the
game to have music or sound effects
going, but maybe not both at once.

The main minus point about using
a standard Amiga package is simply
one of portability of the music.
If, for instance, an ST version of the
game is required then ideally the
music writer and player you use on
the Amiga should also be available on
the ST. | believe that there is now a
SoundTracker file player for the ST,
so if you use that program this would
solve your portability problem.

Memory wise, you should leave aside

about 100 Kbytes for a decent
soundtrack. It is possible to have a
soundtrack that does not use
samples, but generated instruments
as used on the C64. Soundtracks
that use this technique will quite
easily fit within 10 Kbytes, but you
obviously lose a little of the effect of
good Amiga samples.

One point to bear in mind on the
music front is one of playback speed.
Most of the player routines are
patched into the wvertical blank
routine, so on PAL machines the
music is updated 50 times per
second. This seems fine, but remem-
ber that the NTSC standard, as used
in the States, updates 60 times per
second. This means that the music
will be 20% faster over there than
over here. This can turn a good
soundtrack into one that sounds a bit
naff because it is too fast.

Your game should either use a
timer to generate a 1/50th of a sec-
ond interrupt, which will be the same
on any machine, or detect which type
of machine you are on (PAL/NTSC)
and slow down the music accordingly.
This is simply done by not calling the
music routine every 6th vertical blank
on an NTSC machine. Remember also
that you have 20% LESS processor

130 AMIGA FORMAT

%Gomes like
Populous and Stunt
Car Racerreally
come into their own
in head-fo-head
mode - they have
cost us many @
day’s work!®

time per frame on an NTSC machine.
This can cause havoc if you write a
game, designed to run in a single
frame, that has not taken into
account this loss of processor time.

All new Amigas with the fatter
AGNUS chips now have the capability
to be switched into 60 Hz mode.
Monitors (and some TVs) can handle
this, and ideally you should try to get
access to one to test out your code
on in 60 Hz mode. All Amiga games
should also now start to accomodate
this 60 Hz switch capability on a key
press in a game.

Running your game in 60 Hz
mode will result in the game playing
20% faster, and also filling the entire
PAL display (even though the graphics
may look a little stretched). ST
owners have always had this
capabilty, and it is a nice feature to
include into a game.

Intro Sequence

A nice rolling intro for the game can
do wonders for its appeal. They add
nothing to the game, but add a little
variety to the package. A good intro
to a game should be a piece of code
that is technically and visually excel
lent, the sort of thing that is not really
possible to implement in a game
itself, but shows of some of the
capabilities of the Amiga.

This sort of effect should also be
added to the game should anyone
eventually complete the game. It is a
real letdown when you spend months
playing a game, finally manage to
finish it, and up pops a bit of text
saying ‘Well Done" Programmers who
do this should be shot (there is an
animated sequence at the end of
Menace and one after Blood Money,
by the way, so I'm safe from the
assassins for now!)

AND FINALLY..

TEXT ROUTINE
Try to design an impressive character set, maybe incorporating some
copper tricks to jazz the text screens up a bit. If you are working on a
monitor then keep in mind the TV users and don't have a small charac-
ter set, they will probably not be able read it.

HIGH SCORE TABLE
Most arcade style games need a high score table. They are usually
pretty boring to write (this is usually the first routine to get delegated
to new programmers!) A ‘save to disk’ option is usually a must.

DEMO MODE
Any game that has a self-play demo mode is much more likely to be
loaded and displayed in a shop. It will also help when the game is
shown at the multitude of computer shows throughout the year.

SERIAL/PARALLEL LINK
Many games are now incorporating these types of link for head-to-
head action. Games like Populous and Stunt Car Racer really come
into their own in this mode - they have cost us many a day's work! It
really depends on if the game is suited to a two-player head-to-head,
of course, shoot-em-ups generally are not, but there is always a first
time for everything...

PROTECTION
Most programmers tend to implement various protection schemes of
their own, although the disk duplicators can often offer their own tech-
niques also. In my belief it is not possible to protect a disk 100% from
being copied. The main aim is to DELAY as much as possible the
inevitable ‘cracked’ copy appearing.

Most games tend to sell their strongest in the first month. Over a
period of two years, 80% of the sales may well have happened in this
first month. If you can therefore stall the pirates for as long as possi-
ble, people have a much better chance of seeing the game in their
local shop, than suddenly appearing in the post from friends.

Adding protection can be a long and tiresome process. It is sad
that it has to be done, but that is a topic we are all familiar with...

On that sombre note I'll wrap up this series. | hope many of you

have a go at some programming. It is possible to write games in
your spare time as a hobby. You never know, it could lead to a full-
time job. And as the old saying goes, “A man whose hobby is his

job, is a very happy man" (circa. 1990 Dave Jones, DMA Design).

